Schlieren and shadowgraph techniques : visualizing phenomena in transparent media
著者
書誌事項
Schlieren and shadowgraph techniques : visualizing phenomena in transparent media
(Experimental fluid mechanics)
Springer, c2001
大学図書館所蔵 全33件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [291]-332) and index
内容説明・目次
内容説明
Schlieren and shadowgraph techniques are basic and valuable tools in various scientific and engineering disciplines. They allow us to see the invisible: the optical inhomogeneities in transparent media like air, water, and glass that otherwise cause only ghostly distortions of our normal vision.
These techniques are discussed briefly in many books and papers, but there is no up-to-date complete treatment of the subject before now. The book is intended as a practical guide for those who want to use these methods, as well as a resource for a broad range of disciplines where scientific visualization is important. The colorful 400-year history of these methods is covered in an extensive introductory chapter accessible to all readers.
目次
1 Historical Background.- 1.1 The 17th Century.- 1.2 The 18th Century.- 1.3 The 19th Century.- 1.4 The 20th Century.- 2 Basic Concepts.- 2.1 Light Propagation Through Inhomogeneous Media.- 2.2 Definition of a Schliere.- 2.3 Distinction Between Schlieren and Shadowgraph Methods.- 2.4 Direct Shadowgraphy.- 2.5 Simple Lens-Type Schlieren System.- 2.5.1 Point Light Source.- 2.5.2 Extended Light Source.- 2.6 On the Aspect of a Schlieren Image.- 3 Toepler's Schlieren Technique.- 3.1 Lens- and Mirror-Type Systems.- 3.1.1 Lens Systems.- 3.1.2 Mirror Systems.- 3.2 Sensitivity.- 3.2.1 Definition and Geometrical Theory.- 3.2.2 Sensitivity Examples.- 3.2.3 The Limits of Sensitivity.- 3.2.4 Sensitivity Enhancement by Post-Processing.- 3.3 Measuring Range.- 3.3.1 Definition of Measuring Range.- 3.3.2 Adjustment of Measuring Range.- 3.4 Estimating the Sensitivity and Range Required.- 3.5 Resolving Power.- 3.6 Diffraction Effects.- 3.6.1 Diffraction Halos Due to Opaque Edges in the Test Area.- 3.6.2 Diffraction at the Knife-Edge.- 3.7 Magnification and Depth of Field.- 3.7.1 Image Magnification and the Focusing Lens.- 3.7.2 Depth of Field.- 4 Large-Field and Focusing Schlieren Methods.- 4.1 Large Single- and Double-Mirror Systems.- 4.1.1 Availability of Large Schlieren Mirrors.- 4.1.2 Examples of Large-Mirror Systems.- 4.1.3 Perm State's 1-Meter Coincident Schlieren System.- 4.2 Traditional Schlieren Systems with Large Light Sources.- 4.3 Lens-and-Grid Techniques.- 4.3.1 Simple Background Distortion.- 4.3.2 Background Grid Distortion.- 4.3.3 Large Colored Grid Background.- 4.3.4 The Modern Focusing/Large-Field Schlieren System.- 4.3.5 Penn State's Full-Scale Schlieren System.- 4.4 Large-Field Scanning Schlieren Systems.- 4.4.1 Scanning Schlieren Systems for Moving Objects.- 4.4.2 Schlieren Systems with Scanning Light Source and Cutoff.- 4.5 Moire-Fringe Methods.- 4.6 Holographic and Tomographic Schlieren.- 5 Specialized Schlieren Techniques.- 5.1 Special Schlieren CutoffsIll.- 5.1.1 Graded Filters.- 5.1.2 Exponential Cutoffs and Source Filters.- 5.1.3 Matched Spatial Filters at Source and Cutoff.- 5.1.4 Phase Contrast.- 5.1.5 Photochromic and Photorefractive Cutoffs.- 5.2 Color Schlieren Methods.- 5.2.1 Reasons for Introducing Color.- 5.2.2 Conversion from Monochrome to Color Schlieren.- 5.2.3 Classification of Color Schlieren Techniques.- 5.2.4 Recent Developments.- 5.3 Stereoscopic Schlieren.- 5.4 Schlieren Interferometry.- 5.4.1 The Wollaston-Prism Shearing (Differential) Interferometer.- 5.4.2 Diffraction-Based Schlieren Interferometers.- 5.5 Computer-Simulated Schlieren.- 5.6 Various Specialized Techniques.- 5.6.1 Resonant Refractivity and the Visualization of Sound.- 5.6.2 Anamorphic Schlieren Systems.- 5.6.3 Schlieren Observation of Tracers.- 5.6.4 Two-View Schlieren.- 5.6.5 Immersion Methods.- 5.6.6 Infrared Schlieren.- 6 Shadowgraph Techniques.- 6.1 Background.- 6.1.1 Historical Development.- 6.1.2 The Role of Shadowgraphy.- 6.1.3 Advantages and Limitations.- 6.2 Direct Shadowgraphy.- 6.2.1 Direct Shadowgraphy in Diverging Light.- 6.2.2 Direct Shadowgraphy in Parallel Light.- 6.3 "Focused" Shadowgraphy.- 6.3.1 Principle of Operation.- 6.3.2 History and Terminology.- 6.3.3 Advantages and Limitations.- 6.3.4 Magnification, Illuminance, and the Virtual Shadow Effect.- 6.3.5 "Focused" Shadowgraphy in Ballistic Ranges.- 6.4 Specialized Shadowgraph Techniques.- 6.4.1 Large-Scale Shadowgraphy.- 6.4.2 Microscopic, Stereoscopic, and Holographic Shadowgraphy.- 6.4.3 Computed Shadowgraphy.- 6.4.4 Conical Shadowgraphy.- 7 Practical Issues.- 7.1 Optical Components.- 7.1.1 Light Sources.- 7.1.2 Mirrors.- 7.1.3 Schlieren Cutoffs and Source Filters.- 7.1.4 Condensers and Source Slits.- 7.1.5 The Required Optical Quality.- 7.2 Equipment Fabrication, Alignment, and Operation.- 7.2.1 Schlieren System Design Using Ray Tracing Codes.- 7.2.2 Fabrication of Apparatus.- 7.2.3 Setup, Alignment, and Adjustment.- 7.2.4 Vibration and Mechanical Stability.- 7.2.5 Stray Light, Self-Luminous Events, and Secondary Images.- 7.2.6 Interference from Ambient Airflows.- 7.3 Capturing Schlieren Images and Shadowgrams.- 7.3.1 Photography and Cinematography.- 7.3.2 Videography.- 7.3.3 High-Speed imaging.- 7.3.4 Front-Lighting.- 7.4 Commercial and Portable Schlieren Instruments.- 7.4.1 Soviet Instruments.- 7.4.2 Western Instruments.- 7.4.3 Portable Schlieren Apparatus.- 8 Setting Up Your Own Simple Schlieren and Shadowgraph System.- 8.1 Designing the Schlieren System.- 8.2 Determining the Cost.- 8.3 Choosing a Setup Location.- 8.4 Aligning the Optics.- 8.5 Troubleshooting.- 8.6 Recording the Schlieren Image or Shadowgram.- 8.7 Conclusion.- 9 Applications.- 9.1 Phenomena in Solids.- 9.1.1 Glass Technology.- 9.1.2 Polymer-Film Characterization.- 9.1.3 Fracture Mechanics and Terminal Ballistics.- 9.1.4 Specular Reflection from Surfaces.- 9.2 Phenomena in Liquids.- 9.2.1 Convective Heat and Mass Transfer.- 9.2.2 Liquid Surface Waves.- 9.2.3 Liquid Atomization and Sprays.- 9.2.4 Ultrasonics.- 9.2.5 Water Tunnel Testing and Terminal Ballistics.- 9.3 Phenomena in Gases.- 9.3.1 Agricultural Airflows.- 9.3.2 Aero-Optics.- 9.3.3 Architectural Acoustics.- 9.3.4 Boundary Layers.- 9.3.5 Convective Heat and Mass Transfer.- 9.3.6 Heating, Ventilation, and Air-Conditioning.- 9.3.7 Gas Leak Detection.- 9.3.8 Electrical Breakdown and Discharge.- 9.3.9 Explosions, Blasts, Shock Waves, and Shock Tubes.- 9.3.10 Ballistics.- 9.3.11 Gas Dynamics and High-Speed Wind Tunnel Testing.- 9.3.12 Supersonic Jets and Jet Noise.- 9.3.13 Turbomachinery and Rotorcraft.- 9.4 Other Applications.- 9.4.1 Art and music.- 9.4.2 Biomedical Applications.- 9.4.3 Combustion.- 9.4.4 Geophysics.- 9.4.5 Industrial Applications.- 9.4.6 Materials Processing.- 9.4.7 Microscopy.- 9.4.8 Optical Processing.- 9.4.9 Optical Shop Testing.- 9.4.10 Outdoor Schlieren and Shadowgraphy.- 9.4.11 Plasma Dynamics.- 9.4.12 Television Light Valve Projection.- 9.4.13 Turbulence.- 10 Quantitative Evaluation.- 10.1 Quantitative Schlieren Evaluation by Photometry.- 10.1.1 Absolute Photometric Methods.- 10.1.2 Standard Photometric Methods.- 10.2 Grid-Cutoff Methods.- 10.2.1 Focal Grids.- 10.2.2 Defocused Grids.- 10.2.3 Defocused Filament Cutoff.- 10.3 Quantitative Image Velocimetry.- 10.3.1 Background.- 10.3.2 Multiple-Exposure Eddy and Shock Velocimetry.- 10.3.3 Schlieren Image Correlation Velocimetry.- 10.3.4 Focusing Schlieren Deflectometry.- 10.3.5 The Background-Oriented Schlieren System.- 10.4 Quantitative Shadowgraphy.- 10.4.1 Double Integration of d2n/ dy2.- 10.4.2 Turbulence Research.- 10.4.3 Shock-Wave Strength Quantitation.- 10.4.4 Grid Shadowgraphy Methods.- 11 Summary and Outlook.- 11.1 Summary.- 11.1.1 Perceptions Outside the Scientific Community.- 11.1.2 Other Lessons Learned.- 11.1.3 Further Comments on Historical Development.- 11.1.4 Further Comments on Images and Visualization.- 11.1.5 Renewed Vitality.- 11.2 Outlook: Issues for the Future.- 11.2.1 Predictions.- 11.2.2 Opportunities.- 11.2.3 Recommendations.- 11.3 Closing Remarks.- References.- Appendix A Optical Fundamentals.- A. 1 Radiometry and Photometry.- A.2 Refraction Angle 8.- A.2.1 Small Optical Angles and Paraxial Space.- A.2.2 Huygens' Principle and Refraction.- A.3 Optical Components and Devices.- A.3.1 Conjugate Optical Planes.- A.3.2 Lensf/number.- A.3.3 The Thin-Lens Approximation.- A.3.4 Viewing Screens and Ground Glass.- A.3.5 Optical Density.- A.4 Optical Aberrations.- A.5 Light and the Human Eye.- A.6 Geometric Theory of Light Refraction by a Schliere.- Appendix B The Schlieren System as a Fourier Optical Processor.- B. 1 The Basic Fourier Processor with no Schlieren Present.- B.2 The Addition of a Schlieren Test Object.- B.3 The Schlieren Cutoff.- B.4 Other Spatial Filters.- B.5 Partially-Coherent and Polychromatic Illumination.- Appendix C Parts List for a Simple Schlieren/ Shadowgraph System.- C.l Optics.- C.2 Illumination.- C.3 Miscellaneous Components.- C.4 Optical Mounts.- Appendix D Suppliers of Schlieren Systems and Components.- D.l Complete Schlieren Systems.- D.2 Schlieren Field Mirrors.- D.3 Light Sources.- D.4 Components.- D.5 Focusing Schlieren Lenses.- D.6 Miscellaneous.- Color Plates.
「Nielsen BookData」 より