Nonclassical light from semiconductor lasers and LEDs
著者
書誌事項
Nonclassical light from semiconductor lasers and LEDs
(Springer series in photonics, v. 5)
Springer, c2001
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Supplies readers with the basic knowledge and guidance for the application of new lasers and light-emitting devices. The first part of the book discusses the generation of sub-shot-noise light in macroscopic pn junction light emitting devices, the second part is on the application of squeezed light in high-precision measurement, the third part concerns the Coulomb blockade effect in a mesoscopic pn junction and generation of single photon states, and the last part is on the detection of single photons using a visible light photon counter.
目次
1. Nonclassical Light.- 1.1 Classical Description of Light.- 1.2 Quantum Description of Light.- 1.3 Coherent State, Squeezed State and Number-Phase Squeezed State.- 1.4 Quantum Theory of Photodetection and Sub-Poisson Photon Distribution.- 1.5 Quantum Theory of Second-Order Coherence and Photon Antibunching.- 1.6 Quantum Theory of Photocurrent Fluctuation and Squeezing.- 2. Noise of p-n Junction Light Emitters.- 2.1 Introduction.- 2.2 Junction Voltage Dynamics: the Poisson Equation.- 2.3 Semiclassical Langevin Equation for Junction Voltage Dynamics.- 2.3.1 Mesoscopic Case (r ? 1).- 2.3.2 Macroscopic Case (r ? 1).- 2.4 Noise Analysis of an LED.- 2.4.1 Steady-State Conditions.- 2.4.2 Linearization.- 2.4.3 Photon-Number Noise.- 2.4.4 Noise in the External Circuit Current.- 2.4.5 Correlation Between Carrier Number and Junction Voltage.- 2.4.6 Correlation Between Photon Flux and Junction Voltage.- 2.5 Summary.- 3. Sub-Poissonian Light Generation in Light-Emitting Diodes.- 3.1 Introduction.- 3.2 Physical Mechanism of Pump-Noise Suppression.- 3.3 Measurement of the Squeezing Bandwidth.- 3.4 Summary.- 4. Amplitude-Squeezed Light Generation in Semiconductor Lasers.- 4.1 Introduction.- 4.2 Interferometric Measurement of Longitudinal-Mode-Partition Noise.- 4.2.1 Principle.- 4.2.2 Experimental Setup.- 4.3 Grating-Feedback External-Cavity Semiconductor Laser.- 4.3.1 Experimental Setup and Procedure.- 4.3.2 Experimental Results.- 4.3.3 Discussion.- 4.4 Injection-Locked Semiconductor Laser.- 4.4.1 Experimental Setup and Procedure.- 4.4.2 Experimental Results.- 4.4.3 Discussion.- 4.4.4 Modeling of the Noise of an Injection-Locked Laser.- 4.5 Summary.- 5. Excess Intensity Noise of a Semiconductor Laser with Nonlinear Gain and Loss.- 5.1 Introduction.- 5.2 Physical Models for Nonlinearity.- 5.2.1 Nonlinear Gain.- 5.2.2 Nonlinear Loss.- 5.3 Noise Analysis Using Langevin Rate Equations.- 5.4 Numerical Results.- 5.4.1 Numerical Parameters.- 5.4.2 Results.- 5.5 Discussion: Effect of Saturable Loss.- 5.6 Comparison of Two Laser Structures with Respect to Saturable Loss.- 5.6.1 Estimate of the Loss by Si DX Centers.- 5.6.2 Experimental Verification of the Saturable Loss.- 5.6.3 Explanation for the Excess Noise in QW Lasers.- 5.7 Summary.- 6. Transverse-Junction-Stripe Lasers for Squeezed Light Generation.- 6.1 Introduction.- 6.2 Fabrication.- 6.2.1 Si Diffusion and Intermixing.- 6.2.2 High V/III Ratio for Sharper Interfaces.- 6.2.3 P Doping by Zn Diffusion.- 6.2.4 Devices.- 6.3 DC Characterization: Threshold, Loss and Quantum Efficiency.- 6.4 Intensity Noise.- 6.4.1 Influence of High V/III Ratio.- 6.4.2 Optimization of External Coupling Efficiency.- 6.4.3 Polarization-Partition Noise.- 6.4.4 Longitudinal-Mode-Partition Noise.- 6.4.5 Suppressed 1/f Noise.- 6.5 Summary.- 7. Sub-Shot-Noise FM Spectroscopy.- 7.1 Introduction.- 7.2 Advantages of Semiconductor Lasers.- 7.3 Signal-to-Noise Ratio (SNR).- 7.4 Realization of Sub-Shot-Noise FM Spectroscopy.- 7.4.1 Frequency and Noise Control by Injection Locking.- 7.4.2 Effect of Injection Locking on Intensity Noise.- 7.4.3 Suppression of Residual AM by Injection-Locking.- 7.4.4 Suppression of Residual AM by Dual Pump Current Modulation.- 7.4.5 Expected Lineshape.- 7.4.6 Spectroscopic Setup.- 7.5 Experimental Results.- 7.6 Future Prospects.- 8. Sub-Shot-Noise FM Noise Spectroscopy.- 8.1 Introduction.- 8.2 Principle of FM Noise Spectroscopy.- 8.3 Signal-to-Noise Ratio and the Advantage of Amplitude Squeezing.- 8.4 Sub-Shot-Noise Spectroscopy.- 8.4.1 Experimental Setup.- 8.4.2 Laser Trapping and Cooling of Rb.- 8.4.3 Expected Optical Transitions in a Magneto-Optic Trap.- 8.4.4 Sample Probing.- 8.4.5 Experimental Result.- 8.5 Phase-Sensitive FM Noise Spectroscopy.- 8.5.1 Experimental Setup.- 8.5.2 Experimental Results.- 8.6 Summary.- 9. Sub-Shot-Noise Interferometry.- 9.1 Introduction.- 9.2 Sensitivity Limit of an Optical Interferometer.- 9.3 Amplitude-Squeezed Light Injection in a Dual-Input Mach-Zehnder Interferometer.- 9.4 Sub-Shot-Noise Phase Measurement.- 9.4.1 Experimental Procedure.- 9.4.2 Experimental Result.- 9.5 Dual-Input Michelson Interferometer.- 9.5.1 Operation Principle.- 9.5.2 Sensitivity of a Dual-Input Michelson Interferometer.- 9.5.3 Sub-Shot-Noise Interferometry.- 9.6 Summary and Future Prospects.- 10. Coulomb Blockade Effect in Mesoscopic p-n Junctions.- 10.1 Introduction.- 10.2 Calculation of Resonant Tunneling Rates.- 10.2.1 Transmittance of the Barrier.- 10.2.2 Tunneling Matrix Element.- 10.2.3 Electron Tunneling Current Density into the Central QW.- 10.2.4 Effect of Inhomogeneous Broadening.- 10.3 Coulomb Blockade Effect on Resonant Tunneling.- 10.4 Coulomb Staircase.- 10.4.1 DC Voltage Bias Condition.- 10.4.2 DC + AC Voltage Bias Condition.- 10.5 Turnstile Operation.- 10.6 Monte-Carlo Simulations.- 10.7 Summary.- 11. Single-Photon Generation in a Single-Photon Turnstile Device.- 11.1 Introduction.- 11.2 Device Fabrication.- 11.2.1 Wafer Design and Growth.- 11.2.2 Ohmic Contact Formation.- 11.2.3 Device Definition: Electron-Beam Lithography.- 11.2.4 Metal Evaporation and Liftoff.- 11.2.5 Device Isolation: ECR-RIE.- 11.2.6 Surface Passivation.- 11.2.7 Planarization and Top-Contact Evaporation.- 11.3 Observation of the Coulomb Staircase.- 11.4 Single-Photon Turnstile Device.- 11.4.1 Preliminary Characterization.- 11.4.2 Experimental Setup.- 11.4.3 Electrical Characterization.- 11.4.4 Optical Characterization.- 11.5 Summary.- 12. Single-Photon Detection with Visible-Light Photon Counter.- 12.1 Introduction.- 12.2 Comparison of Single-Photon Detectors.- 12.2.1 Photomultiplier Tubes (PMTs).- 12.2.2 Avalanche Photodiodes (APDs).- 12.2.3 Superconducting Tunnel Junctions (STJs).- 12.2.4 Solid-State Photomultipliers (SSPMs) and Visible-Light Photon Counters (VLPCs).- 12.3 Operation Principle of a VLPC.- 12.4 Single-Photon Detection System Based on a VLPC.- 12.5 Quantum Efficiency of a VLPC.- 12.6 Theory of Noise in Avalanche Multiplication.- 12.6.1 Excess Noise Factor (ENF).- 12.6.2 Noise Power Spectral Density of the Multiplied Photocurrent.- 12.6.3 Effect of ENF in the Pulse-Height Distribution.- 12.7 Excess Noise Factor of a VLPC.- 12.7.1 Digital Measurement of the Pulse-Height Distribution.- 12.7.2 Analog Noise Power Spectral Density Measurement.- 12.8 Two-Photon Detection with a VLPC.- 12.8.1 Twin Photon Generation in Optical Parametric Downconversion.- 12.8.1 Characterization of Two-Photon Detection with VLPC.- 12.9 Summary.- 13. Future Prospects.- 13.1 Introduction.- 13.2 Regulated and Entangled Photons from a Single Quantum Dot.- 13.3 Single-Mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity.- 13.4 Lasing and Squeezing of Exciton-Polaritons in a Semiconductor Microcavity.- A. Appendix: Noise and Correlation Spectra for Light-Emitting Diode.- A.1 Linearization.- A.2 LED Photon Noise Spectral Density.- A.3 External Current Noise Spectral Density.- A.4 Junction-Voltage-Carrier-Number Correlation.- A.5 Photon-Flux -Junction-Voltage Correlation.- References.
「Nielsen BookData」 より