Data Mining for Scientific and Engineering Applications
著者
書誌事項
Data Mining for Scientific and Engineering Applications
(Massive computing, 2)
Kluwer Academic Publishers, c2001
- :hb
- :pbk
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications.
Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
目次
- Foreword. List of Contributors. List of Reviewers. Preface. 1. On Mining Scientific Datasets
- C. Kamath. 2. Understanding High Dimensional and Large Data Sets: Some Mathematical Challenges and Opportunities
- J. Chandra. 3. Data Mining at the Interface of Computer Science and Statistics
- P. Smyth. 4. Mining Large Image Collections
- M.C. Burl. 5. Mining Astronomical Databases
- R.M. Humphreys, et al. 6. Searching for Bent-Double Galaxies in the First Survey
- C. Kamath, et al. 7. A Dataspace Infrastructure for Astronomical Data
- R. Grossman, et al. 8. Data Mining Applications in Bioinformatics
- N. Ramakrishnan, A.Y. Grama. 9. Mining Residue Contacts in Proteins
- M.J. Zaki, C. Bystroff. 10. KDD Services at the Goodard Earth Sciences Distributed Archive Center
- C. Lynnes, R. Mack. 11. Data Mining in Integrated Data Access and Data Analysis Systems
- R. Yang, et al. 12. Spatial Data Mining for Classification, Visualisation and Interpretation with Artmap Neural Network
- W. Liu, et al. 13. Real Time Feature Extraction for the Analysis of Turbulent Flows
- I. Marusic, et al. 14. Data Mining for Turbulent Flows
- E.-H. Han, et al. 15. Evita-Efficient Visualization and Interrogation of Tera-Scale Data
- R. Machiraju, et al. 16. Towards Ubiquitous Mining of Distributed Data
- H. Kargupta, et al. 17. Decomposable Algorithms for Data Mining
- R. Bhatnagar. 18. HDDI (R): Hierarchical Distributed Dynamic Indexing
- W.M. Pottenger, et al.19. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets
- H. Nagesh, et al. 20. Efficient Clustering of Very Large Document Collections
- I.S. Dhillon, et al. 21. A Scalable Hierarchical Algorithm for Unsupervised Clustering
- D. Boley. 22. High-Performance Singular Value Decomposition
- D.B. Skillicorn, X. Yang. 23. Mining High-Dimensional Scientific Data Sets Using Singular Value Decomposition
- E. Maltseva, et al. 24. Spatial Dependence in Data Mining
- J.P. LeSage, R.K. Pace. 25. Sparc: Spatial Association Rule-Based Classification
- J. Han, et al. 26. What's Spatial About Spatial Data Mining: Three Case Studies
- S. Shekhar, et al. 27. Predicting Failures in Event Sequences
- M.J. Zaki, et al. 28. Efficient Algorithms for Mining Long Patterns in Scientific Data Sets
- R.C. Agarwal, C.C. Aggarwal. 29. Probabilistic Estimation in Data Mining
- E.P.D. Pednault, C. Apte. 30. Classification Using Association Rules: Weaknesses and Enhancements
- B. Liu, et al.
「Nielsen BookData」 より