Purification process and characterization of ultra high purity metals : application of basic science to metallurgical processing

Author(s)

    • Waseda, Yoshio
    • Isshiki, Minoru

Bibliographic Information

Purification process and characterization of ultra high purity metals : application of basic science to metallurgical processing

Yoshio Waseda, Minoru Isshiki (eds.)

(Springer series in materials processing)

Springer-Verlag, 2001

Available at  / 5 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

This book starts with an extended introductory treatise on the fundamentals before moving on to a detailed description of the new methods of purification of transition metals and rare earth metals.

Table of Contents

I Fundamentals and the Present Status of Purification of Metals.- 1 The Thermodynamics of Oxygen in Reactive Metals.- 1.1 Introduction.- 1.2 Various Techniques for Removing Oxygen from Reactive Metals.- 1.2.1 Solid State Electrotransport.- 1.2.2 Deoxidation Using Metal/Metal Oxide Equilibrium.- 1.2.3 Calcium Halide Flux Deoxidation.- 1.2.4 Electrochemical Deoxidation.- 1.2.5 Deoxidation by Oxyhalide Formation.- 1.3 The Thermodynamics of Oxygen in Reactive Metals.- 1.3.1 The Principle of Measurement of Ultra-Low-Oxygen Potentials.- 1.3.2 Gibbs Energies of Solution of Oxygen in Reactive Metals.- 1.4 The Removal of Oxygen from Reactive Metals.- 1.4.1 The Thermodynamic Properties of Oxygen in Rare Earth Metals.- 1.4.2 The Removal of Oxygen from Rare Earth Metals.- 1.4.3 Comparison with Other Direct Oxygen Removal Techniques.- 1.5 Purity Evaluation of Deoxidized Reactive Metals.- 1.5.1 The Removal of Oxygen from Titanium.- 1.5.2 Purity Evaluation of Deoxidized Titanium.- 1.6 Summary.- References.- 2 Principles of Metal Purification and Purity Evaluation.- 2.1 Methods of Purification.- 2.1.1 Pyrometallurgical Refining.- 2.1.2 Hydrometallurgical Purification.- 2.1.3 Electrochemical Purification.- 2.1.4 Purification Methods Based on Solid-Liquid Equilibria.- 2.1.5 Purifieation by Seleetive Volatilization.- 2.1.6 Purifieation by Eleetrotransport.- 2.2 Purity Evaluation.- 2.2.1 Direct Indication of Purity.- 2.2.2 Indirect Indieation of Purity.- 2.2.3 Comparison of Achieved Purity Levels.- References.- 3 The Purification of Base Transition Metals.- 3.1 The Purification of Titanium.- 3.2 The Purification of Vanadium.- 3.3 The Purification of Chromium.- 3.4 The Purification of Manganese.- 3.5 The Purification of Iron.- 3.6 The Purification of Cobalt.- 3.7 The Purification of Nickel.- 3.8 The Purification of Copper.- 3.9 The Purification of Zinc.- References.- 4 Refractory Metals.- 4.1 Introduction.- 4.2 Group IVa Metals.- 4.2.1 Titanium.- 4.2.2 Zirconium and Hafnium.- 4.3 Group Va Metals.- 4.3.1 Vanadium.- 4.3.2 Niobium.- 4.3.3 Tantalum.- 4.4 Group VIa Metals.- 4.4.1 Chromium.- 4.4.2 Molybdenum.- 4.4.3 Thngsten.- 4.5 Group VIIa Metals.- 4.5.1 Rhenium.- 4.6 Interstitial Impurities.- 4.6.1 General Remarks.- 4.6.2 Nitrogen and Hydrogen.- 4.6.3 Oxygen.- 4.6.4 Carbon.- 4.6.5 Purification by Gettering with a More Reactive Metal.- 4.7 Purification by Electrotransport.- 4.8 Deterioration of the Purity of UHP Refractory Metals During Preparation or Application.- References.- 5 Purification of the Rare Earth Metals.- 5.1 Introduction.- 5.2 Background Information.- 5.2.1 Impurities in Rare Earth Metals.- 5.2.2 The Basic Properties of the Rare Earths.- 5.3 Purification Techniques for Rare Earth Metals.- 5.3.1 Vacuum Melting and Vacuum Degassing.- 5.3.2 Zone Refining.- 5.3.3 Vapor Techniques.- 5.3.4 Solid State Electrotransport (SSE).- 5.4 Retaining Purity During Sampie Preparation and Crystal Growth.- 5.4.1 Combining Purification and Crystal Growth.- 5.4.2 Crystal Growth After Purification.- 5.5 Purification Routes for Rare Earth Metals.- 5.6 Individual Elements.- References.- II New Methods for Purification.- 6 Hydrogen Plasma Arc Melting.- 6.1 Introduction.- 6.2 The Removal of Nonmetallic Impurities by Hydrogen Plasma Arc Melting.- 6.2.1 The Removal of Oxygen, Nitrogen and Carbon from Iron.- 6.2.2 The Removal of Oxygen and Nitrogen from Cobalt.- 6.2.3 The Removal of Oxygen and Nitrogen from Refractory Metals.- 6.3 The Removal of Metallic Impurity Elements by Hydrogen Plasma Arc Melting.- 6.3.1 The Purification of Commercially Pure Refractory Metals.- 6.3.2 The Removal of Alloying Elements from Refractory Metal Based Alloys.- 6.3.3 The Mechanism for Removing Metallic Impurity Elements from the Melt by HPAM.- 6.4 Summary.- References.- 7 Ion-Beam Deposition.- 7.1 Introduction.- 7.2 The Basic Principle of the Ion-Beam Deposition Method.- 7.3 The Design Concepts of Ion-Beam Deposition Systems.- 7.3.1 The Ion Energy Range.- 7.3.2 Ion Current Density and Vacuum Requirements.- 7.3.3 Deposition Time and Dose Calculation.- 7.3.4 The Vacuum Pumping System.- 7.3.5 The Production of a High-Intensity, Low-Energy Metal Ion Beam.- 7.3.6 Ion Beam Transport and Deceleration.- 7.3.7 Sample Manipulation and Film Deposition.- 7.4 High-Purity and High-Corrosion-Resistance Fe Film Formation.- 7.5 Summary.- References.- 8 Purification and Isotope Separation by Laser Techniques.- 8.1 Introduction.- 8.1.1 Laser Light.- 8.2 Absorption and Emission Processes of Light.- 8.3 Laser Manipulation of Atoms.- 8.3.1 Radiation Force.- 8.3.2 Deceleration of an Atom.- 8.3.3 Deflection of an Atomic Beam.- 8.3.4 Reflection and Focusing of the Atomic Beam.- 8.4 Laser Isotope Separation.- 8.4.1 Atomic Vapor Laser Isotope Separation (AVLIS) of Uranium.- 8.4.2 Molecular Laser Isotope Separation (MLIS) of Uranium.- 8.4.3 Other Elements.- 8.5 Light-Induced Drift.- 8.5.1 The Principle.- References.- III Characterization.- 9 Electrical Properties of Ultra-High-Purity Metals.- 9.1 Introduction.- 9.2 The Temperature Dependence of the Electrical Resistivity.- 9.3 Specimen Preparation and Resistivity Measurements.- 9.3.1 Specimen Preparation.- 9.3.2 Resistivity Measurements.- 9.4 The Anisotropy of the Size Effect in dc Electrical Resistivity.- 9.4.1 Dependence on the Surface Orientation.- 9.4.2 Dependence on the Axis Orientation (Direction of Current Flow).- 9.5 Anisotropy of the dc Electrical Resistivity in Cubic Metals.- 9.5.1 Anisotropy of the Bulk Residual Resistivity ?b at 4.2 K.- 9.5.2 The Temperature Dependence of the Anisotropy.- 9.6 Nonlinear I-V Characteristics in Ultra-High-Purity Metals.- 9.7 Ballistic Electron Transport Characteristics in Ultra-High-Purity Metals: Negative Bend Resistance.- 9.8 Magnetic Breakdown Oscillation in Magnetoresistance.- 9.9 Summary.- References.- 10 Surfaces and Interfaces.- 10.1 Introduction.- 10.2 Thermodynamic Features of Surfaces and Interfaces.- 10.2.1 Interfacial Energy.- 10.2.2 Interfacial Segregation.- 10.2.3 Interfacial Structure.- 10.3 Measurement of Surface and Interface Compositions.- 10.4 Surface Behavior.- 10.4.1 Surface Segregation.- 10.4.2 Native Oxide Layer.- 10.5 Interfacial Behavior.- 10.5.1 Grain Boundary Segregation in Polycrystals.- 10.5.2 Grain Boundary Segregation in Bicrystals.- 10.6 Further Approaches for Attaining Surface and Interface Characterization.- 10.7 Summary.- References.- 11 Mechanical Properties.- 11.1 Introduction.- 11.2 The Onset of Slip.- 11.3 The Plastic Behavior of fcc Metals.- 11.3.1 The Work-Hardening Behavior and Microstructure of fcc Metals.- 11.3.2 Thermally Activated Dislocation Motion in fcc Metals.- 11.4 The Plastie Behaviour of Pure bee Metals.- 11.4.1 The Slip Geometry of Pure bcc Metals ..- 11.4.2 The Work-Hardening Behaviour and Microstructure of bcc Metals.- 11.4.3 The Effective Flow Stress of bcc Metals.- 11.4.4 The Flow-Stress Asymmetry of bcc Metals.- 11.4.5 Anomalous Slip in bcc Metals.- 11.4.6 Softening of bcc Metals by Atomic Defects.- 11.4.7 The Kink Theory of bcc Metals.- 11.4.8 Elementary Slip Steps in High-Purity bcc Metals.- 11.4.9 Conclusions for Slip in bcc Metals.- 11.5 Summary.- References.- 12 Atomic Defects in High-Purity Metals: Fundamentals and Equilibrium Concentrations.- 12.1 What Is an Atomic Defect?.- 12.2 How Do We Characterize Intrinsic Atomic Defects?.- 12.3 How Are Atomic Defects Generated?.- 12.4 Intrinsic Atomic Defects in Thermal Equilibrium.- 12.5 The Influence of Impurities on the Vacancy Concentration in Thermal Equilibrium.- 12.6 Experimental Studies of Thermal-Equilibrium Defects.- 12.6.1 General Remarks.- 12.6.2 Calorimetry.- 12.6.3 Differential Dilatometry.- 12.6.4 Positron Annihilation.- 12.6.5 Spin Rotation of Positive Muons (+SR).- 12.7 A Comparison of the Different Techniques.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA54654332
  • ISBN
    • 3540413227
  • LCCN
    00069259
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    New York
  • Pages/Volumes
    xiv , 411 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top