Kalman filtering and neural networks
著者
書誌事項
Kalman filtering and neural networks
(A Wiley-Interscience publication)(Adaptive and learning systems for signal processing, communications, and control)
Wiley, c2001
大学図書館所蔵 全31件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear.
The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover:
An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF)
Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes
The dual estimation problem
Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm
The unscented Kalman filter
Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
目次
Preface.
Contributors.
Kalman Filters (S. Haykin).
Parameter-Based Kalman Filter Training: Theory and Implementaion (G. Puskorius and L. Feldkamp).
Learning Shape and Motion from Image Sequences (G. Patel, et al.).
Chaotic Dynamics (G. Patel and S. Haykin).
Dual Extended Kalman Filter Methods (E. Wan and A. Nelson).
Learning Nonlinear Dynamical System Using the Expectation-Maximization Algorithm (S. Roweis and Z. Ghahramani).
The Unscencted Kalman Filter (E. Wan and R. van der Merwe).
Index.
「Nielsen BookData」 より