Nonlinear systems
著者
書誌事項
Nonlinear systems
Prentice Hall, c2002
3rd ed
大学図書館所蔵 全71件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliography (p. 725-739) and indexes
内容説明・目次
内容説明
For a first-year graduate-level course on nonlinear systems. It may also be used for self-study or reference by engineers and applied mathematicians. The text is written to build the level of mathematical sophistication from chapter to chapter. It has been reorganized into four parts: Basic analysis, Analysis of feedback systems, Advanced analysis, and Nonlinear feedback control.
目次
All chapters conclude with Exercises.
1. Introduction.
Nonlinear Models and Nonlinear Phenomena. Examples.
2. Second-Order Systems.
Qualitative Behavior of Linear Systems. Multiple Equilibria. Qualitative Behavior Near Equilibrium Points. Limit Cycles. Numerical Construction of Phase Portraits. Existence of Periodic Orbits. Bifurcation. Systems.
3. Fundamental Properties.
Existence and Uniqueness. Continuos Dependence on Initial Conditions and Parameters. Differentiability of solutions and Sensitivity Equations. Comparison Principle.
4. Lyapunov Stability.
Autonomous Systems. The Invariance Principle. Linear Systems and Linearization. Comparison Functions. Nonautonomous Systems. Linear Time-Varying Systems and Linearization. Converse Theorems. Boundedness and Ultimate Boundedness. Input-to-State Stability.
5. Input-Output Stability.
L Stability. L Stability of State Models. L2 Gain. Feedback Systems: The Small-Gain Theorem.
6. Passivity.
Memoryless Functions. State Models. Positive Real Transfer Functions. L2 and Lyapunov Stability. Feedback Systems: Passivity Theorems.
7. Frequency-Domain Analysis of Feedback Systems.
Absolute Stability. The Describing Function Method.
8. Advanced Stability Analysis.
The Center Manifold Theorem. Region of Attraction. Invariance-like Theorems. Stability of Periodic Solutions.
9. Stability of Perturbed Systems.
Vanishing Pertubation. Nonvanishing Pertubation. Comparison Method. Continuity of Solutions on the Infinite Level. Interconnected Systems. Slowly Varying Systems.
10. Perturbation Theory and Averaging.
The Perturbation Method. Perturbation on the Infinite Level. Periodic Perturbation of Autonomous Systems. Averaging. Weekly Nonlinear Second-Order Oscillators. General Averaging.
11. Singular Perturbations.
The Standard Singular Perturbation Model. Time-Scale Properties of the Standard Model. Singular Perturbation on the Infinite Interval. Slow and Fast Manifolds. Stability Analysis.
12. Feedback Control.
Control Problems. Stabilization via Linearization. Integral Control. Integral Control via Linearization. Gain Scheduling.
13. Feedback Linearization.
Motivation. Input-Output Linearization. Full-State Linearization. State Feedback Control.
14. Nonlinear Design Tools.
Sliding Mode Control. Lyapunov Redesign. Backstepping. Passivity-Based Control. High-Gain Observers.
Appendix A. Mathematical Review.
Appendix B. Contraction Mapping.
Appendix C. Proofs.
Notes and References.
Bibliography.
Symbols.
Index.
「Nielsen BookData」 より