Materials science in static high magnetic fields

著者

書誌事項

Materials science in static high magnetic fields

K. Watanabe, M. Motokawa (eds.)

(Advances in materials research, 4)

Springer-Verlag, c2002

大学図書館所蔵 件 / 18

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Presents the most comprehensive review of the influence of highly intense magnetic fields on materials of various classes.

目次

I General Review of Static High Magnetic Fields.- 1 Static High Magnetic Fields and Materials Science.- 1.1 Static High Magnetic Field.- 1.2 Materials Science in High Fields.- References.- II High-Tc Oxide High Field Superconductors.- 2 Vortex Phase Diagram of High-Tc Superconductor YBa2Cu3Oy in High Magnetic Fields.- 2.1 Melting Transition of the Vortex System.- 2.1.1 First-Order Vortex-Lattice Melting Transition.- 2.1.2 Second-Order Vortex-Glass Melting Transition.- 2.2 Second-Peak Effect in Magnetization Hysteresis.- 2.3 Vortex Phase Diagram.- 2.4 Effect of the Oxygen Deficiency.- 2.5 Conclusion.- References.- 3 Magnetic Ordering and Superconductivity in La-based High-Tc Superconductors.- 3.1 Sound Velocity and Effects of the Magnetic Field on the Crystal Lattice.- 3.2 La-NMR and Antiferromagnetic Spin Ordering.- 3.3 Cu/La-NMR in La2?xBaxCuO4 (x = 0.125).- 3.4 La-NMR and Spin Ordering in La2?xSrxCuO4 and La1.96?xY0.04SrxCuO4 (x ? 1/8).- 3.5 Elastic Properties of the Flux-Line Lattice and Superconductivity.- 3.6 Conclusion.- References.- 4 Flux-Pinning Properties for CVD Processed YBa2Cu3O7 Films.- 4.1 Critical Current Measurement.- 4.2 Characteristics of CVD-YBCO Films.- 4.3 Crossover from Extrinsic to Intrinsic Pinning.- 4.4 Temperature-Scaling Law and Irreversibility Field.- 4.5 Critical Surface of YBCO.- 4.6 Conclusion..- References.- 5 Practical Application of High Temperature Superconductors.- 5.1 Critical Surface and Critical Current Density Characteristics for High-Temperature Superconductors.- 5.2 High-Temperature Superconducting Applications to Current Leads.- 5.2.1 Y123 Current Leads and a Critical-Current Measurement Holder.- 5.2.2 Bi2223 Current Leads and a Cryogenfree Superconducting Magnet.- 5.3 Developmental Research of a High-Temperature Superconducting Coil.- 5.4 Concluding Remarks.- References.- III Conventional High-Field Superconductors.- 6 Highly Strengthened Nb3Sn Superconducting Wires.- 6.1 Experimental.- 6.2 Stress/Strain Characteristics of Wires.- 6.2.1 Bronze-Processed Nb3Sn Wire Reinforcing-Stabilized with Cu?Nb Composite..- 6.2.2 Tube-Processed Nb3Sn Wire Reinforcing Stabilized with Alumina-Dispersion-Strengthened Copper.- 6.3 Conclusion.- References.- 7 Development of Nb3Al Superconductors.- 7.1 Variation of Fabrication Process for Nb3Al Superconductors.- 7.2 Nb/Al Microcomposite Precursor Wires for the RHQT Process.- 7.3 Enhancements in Current Capacities..- 7.4 Stabilization.- 7.4.1 Internal Ag Stabilization.- 7.4.2 Mechanical Cladding of Cu.- 7.4.3 Combination of Cu-Ion Plating and Cu Electroplating.- 7.5 Microstructure of RHQT-Processed Nb3Al Wire.- 7.6 Additional Effects of Ge and Cu on the Precursor Wire.- 7.7 Remark.- References.- 8 High-Field A15 Superconductors Prepared Via New Routes.- 8.1 Nb3(Al,Ge) Superconductors Prepared from ?-Phase/Nb Mixed Powder Core.- 8.1.1 Experimental Procedure.- 8.1.2 Experimental Results.- 8.1.3 Features of this Conductor.- 8.2 Nb3Sn and (Nb,Ta)3Sn Superconductors Prepared from Intermediate Compound Powder.- 8.2.1 Experimental Procedure.- 8.2.2 Experimental Results.- 8.2.3 Features of this Conductor.- 8.3 (Nb,Ta)3Sn Superconductors Prepared from Ta-Sn Core.- 8.4 Conclusion.- References.- IV Magnetic and Optical Properties in High Fields.- 9 Magnetic Properties of Rare-Earth Monopnictides in High Magnetic Fields.- 9.1 Introduction.- 9.1.1 Properties of Rare-Earth Compounds: Valence Fluctuations and Heavy Fermions.- 9.1.2 Competition Between Kondo Effect and Magnetic Ordering.- 9.1.3 Magnetic and Electrical Properties of Low-Carrier Systems.- 9.2 Investigation of the Fermi Surface.- 9.2.1 Theoretical Background of the dHvA Effect.- 9.2.2 Experimental Details.- 9.3 Negative Pressure Effect on CeSb.- 9.4 Antiferromagnetic Order and Quadrupole Order in DySb.- 9.5 Fermi Surface of GdAs.- 9.6 Magnetic Interaction and Fermi Surface of TbSb.- 9.7 Fermi Surface of Rare-Earth Antimonides.- 9.8 Conclusion.- References.- 10 High-Field Magnetization Process and Crystalline Electric Field Interaction in Rare-Earth Permanent-Magnet Materials.- 10.1 Exchange and Crystal Field Model for the (R1?xR?x)hFekX System.- 10.2 High-Field Magnetization, Spin Reorientation and Magnetostriction in (Er1?xTbx)2Fe14B.- 10.3 Magnetic Properties of c-Axis Oriented SmFe12: ?-Fe Nanocomposite Thin Films.- 10.4 Conclusion.- References.- 11 Study of Covalent Spin Interactions in Cd1?xMnxSe by Cryobaric Magnetophotoluminescence.- 11.1 Experiment.- 11.2 Experimental Results.- 11.3 Discussion.- 11.3.1 Mean-Field Approximation.- 11.3.2 Analysis of the Experimental Data.- 11.4 Conclusion.- References.- V Other High Field Physical Properties.- 12 Magnetic Properties of III?-V Ferromagnetic Semiconductor (Ga,Mn)As.- 12.1 Preparation of (Ga,Mn)As by Molecular Beam Epitaxy and its Lattice Properties.- 12.2 Magnetic and Magnetotransport Properties.- 12.2.1 Magnetic Properties.- 12.2.2 Magnetotransport Properties.- 12.3 Origin of Ferromagnetism.- 12.4 Heterostructures.- 12.4.1 Trilayers.- 12.4.2 Resonant-Tunneling Structures.- 12.4.3 Electrical Spin Injection in Ferromagnetic Semiconductor Heterostructures.- 12.5 Conclusion.- References.- 13 Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions.- 13.1 Experiments.- 13.1.1 Samples and Measurement Procedures.- 13.1.2 Conductivity of the CFs.- 13.1.3 Magnetoresistance of the CFs.- Discussion.- Conclusion.- References.- 14 Novel Electronic States in Low-Dimensional Organic Conductors.- 14.1 Magnetic Breakdown in ?-(BEDT-TTF)2Cu(NCS)2.- 14.2 Hc2 Study of Organic Superconductor ss-(BEDT-TTF)2I3 Under Pressure.- 14.3 Magnetoresistance Symmetry of Two-Dimensional Organic ?-Conductors.- 14.4 Direct Observation of Reconstructed Fermi Surfaces of (TMTSF)2ClO4 Utilizing the Third Angular Effect of Magnetoresistance.- 14.5 Conclusion.- References.- 15 High-Field Successive Phase Transitions of Spin-Density-Wave Organic Conductors ?-(BEDT-TTF)2MHg(XCN)4 [M=K, Rb and NH4 and X=S and Se].- 15.1 Introduction.- 15.1.1 The ?-(BEDT-TTF)2MHg(XCN)4 Family.- 15.1.2 ?-(BEDT-TTF)2KHg(SCN)4: A Novel Density-Wave Metal.- 15.1.3 Magnetic Phase Diagram of ?-(BEDT-TTF)2KHg(SCN)4.- 15.1.4 Subjects of this Review.- 15.2 Experiment and Analysis.- 15.2.1 Samples and Measurements.- 15.2.2 De Haas-van Alphen Oscillations of the Magnetic Torque.- 15.3 Spin-Splitting Phenomena in dHvA Oscillations.- 15.3.1 ?-(BEDT-TTF)2KHg(SeCN)4: Normal Metal.- 15.3.2 ?-(BEDT-TTF)2KHg(SCN)4: AF Metal.- 15.4 Effective Mass and g-Factor in the Magnetic Phases.- 15.5 Problems for the Future.- 15.6 Conclusion.- References.- 16 NMR/NQR Studies on Magnetism of Spin Ladder Sr14?xAx Cu24O41(A=Ca and La).- 16.1 Experimental.- 16.2 Hole-Doping Effects on Spin Gaps in Sr14?xLaxCu24O41.- 16.3 Staggered Moments in Sr14?xLaxCu24O41.- 16.4 Magnetism of Sr2.5Ca11.5Cu24O41.- 16.5 Conclusion.- References.- 17 NMR Study of the Tl-Based High-Tc Cuprate Tl(Ba,Sr)2(Y,Ca)Cu2O7 in a Wide Hole Concentration Range from the Antiferromagnetic to the Overdoped Region.- 17.1 Experimental.- 17.2 Antiferromagnetic Phase of TB1212.- 17.2.1 Cu-NMR Spectra.- 17.2.2 Tl-NMR Spectra.- 17.2.3 Cu-NMR Relaxation Rate T1?1.- 17.2.4 Tl-NMR Relaxation Rate T1?1.- 17.2.5 Static Properties of the Antiferromagnetic Phase.- 17.2.6 Dynamical Properties of the Antiferromagnetic Phase.- 17.3 Lightly Doped and Slightly Overdoped Phase of T11212.- 17.3.1 Spectra and Relaxation Rate of Tl-NMR.- 17.3.2 Spin-Gap in the Tl-Based System.- 17.4 Conclusion.- References.- VI Chemistry, Biology and Crystal Growth in High Fields.- 18 Magnetic Levitation.- 18.1 Levitation by Means of a Magnetic Field.- 18.1.1 General Principle.- 18.1.2 Necessity of Negative Susceptibility.- 18.1.3 Levitation Condition for Two Coexisting Materials.- 18.1.4 Origin of the Magnetic Susceptibility.- 18.1.5 Electrons in a Closed Shell of Atoms or Ions.- 18.1.6 Electrons in Molecular Orbits.- 18.1.7 Unpaired Electrons in Atoms or Molecules.- 18.1.8 Conduction Electrons in Metals.- 18.1.9 Electrons in Superconductors.- 18.2 Magnetic Levitation Experiments.- 18.2.1 High Field Laboratory for Superconducting Materials (IMR) at Tohoku University.- 18.2.2 Other Facilities in the World.- Conclusion.- References.- 19 Effects of a Magnetic Field on the Crystallization of Protein.- 19.1 Crystallization of Protein in a Magnetic Field.- 19.2 Orientation of the Crystals.- 19.3 Growth Rate of Protein Crystals in a Homogeneous Magnetic Field.- 19.4 Damping of Convection in NaCl Aqueous Solution by a Magnetic Field.- 19.5 Conclusion.- References.- 20 Magnetoelectrochemistry with a Conducting Polymer.- 20.1 Magnetoelectropolymerization.- 20.2 Magnetoelectropolymerized Film Electrodes.- 20.3 Control of the Learning Effect.- 20.4 Accumulative Effect of the Magnetic Field.- 20.5 Future Perspective.- References.- 21 Highly Oriented Crystal Growth of Bi-Based Oxide High-Tc Superconductors in High Magnetic Fields.- 21.1 Ag-doped Bi2212 Bulk Materials.- 21.1.1 Experimental Procedure.- 21.1.2 Crystal Growth and Properties.- 21.2 Bi2212/Ag Tapes.- 21.2.1 Experimental Procedure.- 21.2.2 Microstructure and Properties.- 21.3 Conclusion.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ