Materials science in static high magnetic fields

Author(s)
Bibliographic Information

Materials science in static high magnetic fields

K. Watanabe, M. Motokawa (eds.)

(Advances in materials research, 4)

Springer-Verlag, c2002

Search this Book/Journal
Note

Includes bibliographical references and index

Description and Table of Contents

Description

Presents the most comprehensive review of the influence of highly intense magnetic fields on materials of various classes.

Table of Contents

I General Review of Static High Magnetic Fields.- 1 Static High Magnetic Fields and Materials Science.- 1.1 Static High Magnetic Field.- 1.2 Materials Science in High Fields.- References.- II High-Tc Oxide High Field Superconductors.- 2 Vortex Phase Diagram of High-Tc Superconductor YBa2Cu3Oy in High Magnetic Fields.- 2.1 Melting Transition of the Vortex System.- 2.1.1 First-Order Vortex-Lattice Melting Transition.- 2.1.2 Second-Order Vortex-Glass Melting Transition.- 2.2 Second-Peak Effect in Magnetization Hysteresis.- 2.3 Vortex Phase Diagram.- 2.4 Effect of the Oxygen Deficiency.- 2.5 Conclusion.- References.- 3 Magnetic Ordering and Superconductivity in La-based High-Tc Superconductors.- 3.1 Sound Velocity and Effects of the Magnetic Field on the Crystal Lattice.- 3.2 La-NMR and Antiferromagnetic Spin Ordering.- 3.3 Cu/La-NMR in La2?xBaxCuO4 (x = 0.125).- 3.4 La-NMR and Spin Ordering in La2?xSrxCuO4 and La1.96?xY0.04SrxCuO4 (x ? 1/8).- 3.5 Elastic Properties of the Flux-Line Lattice and Superconductivity.- 3.6 Conclusion.- References.- 4 Flux-Pinning Properties for CVD Processed YBa2Cu3O7 Films.- 4.1 Critical Current Measurement.- 4.2 Characteristics of CVD-YBCO Films.- 4.3 Crossover from Extrinsic to Intrinsic Pinning.- 4.4 Temperature-Scaling Law and Irreversibility Field.- 4.5 Critical Surface of YBCO.- 4.6 Conclusion..- References.- 5 Practical Application of High Temperature Superconductors.- 5.1 Critical Surface and Critical Current Density Characteristics for High-Temperature Superconductors.- 5.2 High-Temperature Superconducting Applications to Current Leads.- 5.2.1 Y123 Current Leads and a Critical-Current Measurement Holder.- 5.2.2 Bi2223 Current Leads and a Cryogenfree Superconducting Magnet.- 5.3 Developmental Research of a High-Temperature Superconducting Coil.- 5.4 Concluding Remarks.- References.- III Conventional High-Field Superconductors.- 6 Highly Strengthened Nb3Sn Superconducting Wires.- 6.1 Experimental.- 6.2 Stress/Strain Characteristics of Wires.- 6.2.1 Bronze-Processed Nb3Sn Wire Reinforcing-Stabilized with Cu?Nb Composite..- 6.2.2 Tube-Processed Nb3Sn Wire Reinforcing Stabilized with Alumina-Dispersion-Strengthened Copper.- 6.3 Conclusion.- References.- 7 Development of Nb3Al Superconductors.- 7.1 Variation of Fabrication Process for Nb3Al Superconductors.- 7.2 Nb/Al Microcomposite Precursor Wires for the RHQT Process.- 7.3 Enhancements in Current Capacities..- 7.4 Stabilization.- 7.4.1 Internal Ag Stabilization.- 7.4.2 Mechanical Cladding of Cu.- 7.4.3 Combination of Cu-Ion Plating and Cu Electroplating.- 7.5 Microstructure of RHQT-Processed Nb3Al Wire.- 7.6 Additional Effects of Ge and Cu on the Precursor Wire.- 7.7 Remark.- References.- 8 High-Field A15 Superconductors Prepared Via New Routes.- 8.1 Nb3(Al,Ge) Superconductors Prepared from ?-Phase/Nb Mixed Powder Core.- 8.1.1 Experimental Procedure.- 8.1.2 Experimental Results.- 8.1.3 Features of this Conductor.- 8.2 Nb3Sn and (Nb,Ta)3Sn Superconductors Prepared from Intermediate Compound Powder.- 8.2.1 Experimental Procedure.- 8.2.2 Experimental Results.- 8.2.3 Features of this Conductor.- 8.3 (Nb,Ta)3Sn Superconductors Prepared from Ta-Sn Core.- 8.4 Conclusion.- References.- IV Magnetic and Optical Properties in High Fields.- 9 Magnetic Properties of Rare-Earth Monopnictides in High Magnetic Fields.- 9.1 Introduction.- 9.1.1 Properties of Rare-Earth Compounds: Valence Fluctuations and Heavy Fermions.- 9.1.2 Competition Between Kondo Effect and Magnetic Ordering.- 9.1.3 Magnetic and Electrical Properties of Low-Carrier Systems.- 9.2 Investigation of the Fermi Surface.- 9.2.1 Theoretical Background of the dHvA Effect.- 9.2.2 Experimental Details.- 9.3 Negative Pressure Effect on CeSb.- 9.4 Antiferromagnetic Order and Quadrupole Order in DySb.- 9.5 Fermi Surface of GdAs.- 9.6 Magnetic Interaction and Fermi Surface of TbSb.- 9.7 Fermi Surface of Rare-Earth Antimonides.- 9.8 Conclusion.- References.- 10 High-Field Magnetization Process and Crystalline Electric Field Interaction in Rare-Earth Permanent-Magnet Materials.- 10.1 Exchange and Crystal Field Model for the (R1?xR?x)hFekX System.- 10.2 High-Field Magnetization, Spin Reorientation and Magnetostriction in (Er1?xTbx)2Fe14B.- 10.3 Magnetic Properties of c-Axis Oriented SmFe12: ?-Fe Nanocomposite Thin Films.- 10.4 Conclusion.- References.- 11 Study of Covalent Spin Interactions in Cd1?xMnxSe by Cryobaric Magnetophotoluminescence.- 11.1 Experiment.- 11.2 Experimental Results.- 11.3 Discussion.- 11.3.1 Mean-Field Approximation.- 11.3.2 Analysis of the Experimental Data.- 11.4 Conclusion.- References.- V Other High Field Physical Properties.- 12 Magnetic Properties of III?-V Ferromagnetic Semiconductor (Ga,Mn)As.- 12.1 Preparation of (Ga,Mn)As by Molecular Beam Epitaxy and its Lattice Properties.- 12.2 Magnetic and Magnetotransport Properties.- 12.2.1 Magnetic Properties.- 12.2.2 Magnetotransport Properties.- 12.3 Origin of Ferromagnetism.- 12.4 Heterostructures.- 12.4.1 Trilayers.- 12.4.2 Resonant-Tunneling Structures.- 12.4.3 Electrical Spin Injection in Ferromagnetic Semiconductor Heterostructures.- 12.5 Conclusion.- References.- 13 Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions.- 13.1 Experiments.- 13.1.1 Samples and Measurement Procedures.- 13.1.2 Conductivity of the CFs.- 13.1.3 Magnetoresistance of the CFs.- Discussion.- Conclusion.- References.- 14 Novel Electronic States in Low-Dimensional Organic Conductors.- 14.1 Magnetic Breakdown in ?-(BEDT-TTF)2Cu(NCS)2.- 14.2 Hc2 Study of Organic Superconductor ss-(BEDT-TTF)2I3 Under Pressure.- 14.3 Magnetoresistance Symmetry of Two-Dimensional Organic ?-Conductors.- 14.4 Direct Observation of Reconstructed Fermi Surfaces of (TMTSF)2ClO4 Utilizing the Third Angular Effect of Magnetoresistance.- 14.5 Conclusion.- References.- 15 High-Field Successive Phase Transitions of Spin-Density-Wave Organic Conductors ?-(BEDT-TTF)2MHg(XCN)4 [M=K, Rb and NH4 and X=S and Se].- 15.1 Introduction.- 15.1.1 The ?-(BEDT-TTF)2MHg(XCN)4 Family.- 15.1.2 ?-(BEDT-TTF)2KHg(SCN)4: A Novel Density-Wave Metal.- 15.1.3 Magnetic Phase Diagram of ?-(BEDT-TTF)2KHg(SCN)4.- 15.1.4 Subjects of this Review.- 15.2 Experiment and Analysis.- 15.2.1 Samples and Measurements.- 15.2.2 De Haas-van Alphen Oscillations of the Magnetic Torque.- 15.3 Spin-Splitting Phenomena in dHvA Oscillations.- 15.3.1 ?-(BEDT-TTF)2KHg(SeCN)4: Normal Metal.- 15.3.2 ?-(BEDT-TTF)2KHg(SCN)4: AF Metal.- 15.4 Effective Mass and g-Factor in the Magnetic Phases.- 15.5 Problems for the Future.- 15.6 Conclusion.- References.- 16 NMR/NQR Studies on Magnetism of Spin Ladder Sr14?xAx Cu24O41(A=Ca and La).- 16.1 Experimental.- 16.2 Hole-Doping Effects on Spin Gaps in Sr14?xLaxCu24O41.- 16.3 Staggered Moments in Sr14?xLaxCu24O41.- 16.4 Magnetism of Sr2.5Ca11.5Cu24O41.- 16.5 Conclusion.- References.- 17 NMR Study of the Tl-Based High-Tc Cuprate Tl(Ba,Sr)2(Y,Ca)Cu2O7 in a Wide Hole Concentration Range from the Antiferromagnetic to the Overdoped Region.- 17.1 Experimental.- 17.2 Antiferromagnetic Phase of TB1212.- 17.2.1 Cu-NMR Spectra.- 17.2.2 Tl-NMR Spectra.- 17.2.3 Cu-NMR Relaxation Rate T1?1.- 17.2.4 Tl-NMR Relaxation Rate T1?1.- 17.2.5 Static Properties of the Antiferromagnetic Phase.- 17.2.6 Dynamical Properties of the Antiferromagnetic Phase.- 17.3 Lightly Doped and Slightly Overdoped Phase of T11212.- 17.3.1 Spectra and Relaxation Rate of Tl-NMR.- 17.3.2 Spin-Gap in the Tl-Based System.- 17.4 Conclusion.- References.- VI Chemistry, Biology and Crystal Growth in High Fields.- 18 Magnetic Levitation.- 18.1 Levitation by Means of a Magnetic Field.- 18.1.1 General Principle.- 18.1.2 Necessity of Negative Susceptibility.- 18.1.3 Levitation Condition for Two Coexisting Materials.- 18.1.4 Origin of the Magnetic Susceptibility.- 18.1.5 Electrons in a Closed Shell of Atoms or Ions.- 18.1.6 Electrons in Molecular Orbits.- 18.1.7 Unpaired Electrons in Atoms or Molecules.- 18.1.8 Conduction Electrons in Metals.- 18.1.9 Electrons in Superconductors.- 18.2 Magnetic Levitation Experiments.- 18.2.1 High Field Laboratory for Superconducting Materials (IMR) at Tohoku University.- 18.2.2 Other Facilities in the World.- Conclusion.- References.- 19 Effects of a Magnetic Field on the Crystallization of Protein.- 19.1 Crystallization of Protein in a Magnetic Field.- 19.2 Orientation of the Crystals.- 19.3 Growth Rate of Protein Crystals in a Homogeneous Magnetic Field.- 19.4 Damping of Convection in NaCl Aqueous Solution by a Magnetic Field.- 19.5 Conclusion.- References.- 20 Magnetoelectrochemistry with a Conducting Polymer.- 20.1 Magnetoelectropolymerization.- 20.2 Magnetoelectropolymerized Film Electrodes.- 20.3 Control of the Learning Effect.- 20.4 Accumulative Effect of the Magnetic Field.- 20.5 Future Perspective.- References.- 21 Highly Oriented Crystal Growth of Bi-Based Oxide High-Tc Superconductors in High Magnetic Fields.- 21.1 Ag-doped Bi2212 Bulk Materials.- 21.1.1 Experimental Procedure.- 21.1.2 Crystal Growth and Properties.- 21.2 Bi2212/Ag Tapes.- 21.2.1 Experimental Procedure.- 21.2.2 Microstructure and Properties.- 21.3 Conclusion.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top