Theory and applications of higher-dimensional Hadamard matrices
Author(s)
Bibliographic Information
Theory and applications of higher-dimensional Hadamard matrices
(Combinatorics and computer science / editor-in-chief, Liu Yanpei ; co-editor-in-chief, David M. Jackson, Pierre Hansen, Fred S. Roberts, v. 1)
Science Press , Kluwer Academic Publishers, c2001
- : cc
- : us
- : Kluwer
Available at 14 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: ccXIA||1||102004488
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This is the first book on higher dimensional Hadamard matrices and their applications in telecommunications and information security. It is divided into three parts according to the dimensions of the Hadamard matrices treated.
Table of Contents
Preface. Part I: Two Dimensional Cases. 1. Walsh Matrices. 2. Hadamard Matrices. Part II: Lower-Dimensional Cases. 3. Three-Dimensional Hadamard Matrices. 4. Higher-Dimensional Walsh-Hadamard Transforms. Part III: General Higher-Dimensional Cases. 5. eta-Dimensional Hadamard Matrices of Order 2. 6. General Higher-Dimensional Hadamard Matrices. Concluding Questions. Index.
by "Nielsen BookData"