Boundary element programming in mechanics
著者
書誌事項
Boundary element programming in mechanics
Cambridge University Press, 2002
- : hard
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 247-252) and index
内容説明・目次
内容説明
Nonlinear stress analysis (a branch of solid mechanics) is an essential feature in the design of such diverse structures as aircraft, bridges, machines, and dams. Computational techniques have become vital tools in dealing with the complex, time-consuming problems associated with nonlinear stress analysis. Although finite element techniques are widely used, boundary element methods (BEM) offer a powerful alternative, especially in tackling problems of three-dimensional plasticity. This 2002 book describes the application of BEM in solid mechanics, beginning with basic theory and then explaining the numerical implementation of BEM in nonlinear stress analysis. The authors have also developed a BEM source code for use by the reader, which is available on the book's companion website. This book will be especially useful to stress analysts in industry, research workers in the field of computational plasticity, and postgraduate students taking courses in engineering mechanics.
目次
- Preface
- Part I. Linear Problems: 1. Introduction
- 2. Theory of elasticity
- 3. Boundary integral equations for elasticity
- 4. Numerical implementation
- 5. The elastic program code
- 6. Linear applications
- Part II. Non-Linear Problems: 7. Rate-independent plasticity theory
- 8. Boundary integral equations in elasto-plasticity
- 9. Numerical implementation
- 10. The elasto-plastic program code
- 11. Non-linear applications
- 12. Epilogue
- Appendices: A. Derivation of the kernel functions
- B. Shape functions
- C. Degenerate elements
- D. Elasto-plastic flow theory
- E. Domain integral formulations
- F. Solution of non-linear system equations
- G. Elements of elasto-plasticity
- H. Description of input data.
「Nielsen BookData」 より