Theory of nonlinear acoustics in fluids
Author(s)
Bibliographic Information
Theory of nonlinear acoustics in fluids
(Fluid mechanics and its applications, v. 67)
Kluwer Academic, c2002
- : pbk
Available at 15 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers' equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers' equation, travelling wave solutions of Bu- ers' equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation.
Table of Contents
Preface. 1. Introduction. 2. Physical theory of nonlinear acoustics. 3. Basic methods of nonlinear acoustics. 4. Nonlinear waves with zero and vanishing diffusion. 5. Nonlinear plane diffusive waves. 6. Nonlinear cylindrical and spherical diffusive waves. 7. Nonlinear bounded sound beams. 8. Nonlinear standing waves in closed tubes. 9. Name index. 10. Subject index.
by "Nielsen BookData"