Cellular neural networks and visual computing : foundation and applications
著者
書誌事項
Cellular neural networks and visual computing : foundation and applications
Cambridge University Press, 2002
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Cellular Nonlinear/neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed and are paving the way to an analog computing industry. This unique undergraduate level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers and engineers from a wide range of disciplines. Although its prime focus is on visual computing, the concepts and techniques described in the book will be of great interest to those working in other areas of research including modeling of biological, chemical and physical processes. Leon Chua, co-inventor of the CNN, and Tamas Roska are both highly respected pioneers in the field.
目次
- 1. Once over lightly
- 2. Introduction - notations, definitions and mathematical foundation
- 3. Characteristics and analysis of simple CNN templates
- 4. Simulation of the CNN dynamics
- 5. Binary CNN characterization via Boolean functions
- 6. Uncoupled CNNs: unified theory and applications
- 7. Introduction to the CNN universal machine
- 8. Back to basics: nonlinear dynamics and complete stability
- 9. The CNN universal machine (CNN - UM)
- 10. Template design tools
- 11. CNNs for linear image processing
- 12. Coupled CNN with linear synaptic weights
- 13. Uncoupled standard CNNs with nonlinear synaptic weights
- 14. Standard CNNs with delayed synaptic weights and motion analysis
- 15. Visual microprocessors - analog and digital VLSI implementation of the CNN universal machine
- 16. CNN models in the visual pathway and the 'bionic eye'
- Appendix A. A CNN template library
- Appendix B. Using a simple multi-layer CNN analogic dynamic template and algorithm simulator (CANDY)
- Appendix C. A program for binary CNN template design and optimization (TEMPO).
「Nielsen BookData」 より