Analyzing video sequences of multiple humans : tracking, posture estimation and behavior recognition
著者
書誌事項
Analyzing video sequences of multiple humans : tracking, posture estimation and behavior recognition
(The Kluwer international series in video computing)
Kluwer Academic, c2002
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references(p.130-131) and index
内容説明・目次
内容説明
Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition describes some computer vision-based methods that analyze video sequences of humans. More specifically, methods for tracking multiple humans in a scene, estimating postures of a human body in 3D in real-time, and recognizing a person's behavior (gestures or activities) are discussed. For the tracking algorithm, the authors developed a non-synchronous method that tracks multiple persons by exploiting a Kalman filter that is applied to multiple video sequences. For estimating postures, an algorithm is presented that locates the significant points which determine postures of a human body, in 3D in real-time. Human activities are recognized from a video sequence by the HMM (Hidden Markov Models)-based method that the authors pioneered. The effectiveness of the three methods is shown by experimental results.
目次
- List of Figures. List of Tables. Preface. Contributing Authors. 1: Introduction
- J. Ohya. 2: Tracking multiple persons from multiple camera images
- A. Utsumi. 2.1. Overview. 2.2. Preparation. 2.3. Features of Multiple camera based tracking systems. 2.4. Algorithms for multiple-camera human tracking system. 2.5. Implementation. 2.6. Experiments. 2.7. Discussion and Conclusions 3: Posture estimation
- J. Ohya. 3.1. Introduction. 3.2. A heuristic for estimating postures in 2D. 3.3. A heuristic method for estimating postures in 3D. 3.4. A non-heuristic method for estimating postures in 3D. 3.5. Applications to virtual environments. 3.6. Discussions and conclusions. 4: Recognizing human behavior using Hidden Markov Models
- J. Yamato. 4.1. Background and overview. 4.2. Hidden Markov models. 4.3. Applying HMM to time-sequential images. 4.4. Experiments. 4.5. Category-separated vector quantization. 4.6. Applying image database search. 4.7. Discussions and conclusion. 5: Conclusion and Future Work
- J. Ohya. Index.
「Nielsen BookData」 より