The semantics and proof theory of the logic of bunched implications
Author(s)
Bibliographic Information
The semantics and proof theory of the logic of bunched implications
(Applied logic series, v. 26)
Kluwer Academic, c2002
Available at 13 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 271-282) and index
Description and Table of Contents
Description
This is a monograph about logic. Specifically, it presents the mathe matical theory of the logic of bunched implications, BI: I consider Bl's proof theory, model theory and computation theory. However, the mono graph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: * Resources as a basis for semantics; * Proof-search as a basis for reasoning; and * The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding devel opment for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated compu tational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts.
Table of Contents
- List of Figures. List of Tables. Preface. Acknowledgments. Foreword. Introduction
- David J. Pym. Part I: Propositional BI. 1. Introduction to Part I. 2. Natural Deduction for Propositional BI. 3. Algebraic, Topological, Categorical. 4. Kripke Semantics. 5. Topological Kripke Semantics. 6. Propositional BI as a Sequent Calculus. 7. Towards Classical Propositional BI. 8. Bunched Logical Relations. 9. The Sharing Interpretation, I. Part II: Predicate BI. 10. Introduction to Part II. 11. The Syntax of Predicate BI. 12. Natural Deduction & Sequent Calculus For Predicate BI. 13. Kripke Semantics for Predicate BI. 14. Topological Kripke Semantics for Predicate BI. 15. Resource Semantics, Type Theory & Fibred Categories. 16. The Sharing Interpretation, II. Bibliography. Index.
by "Nielsen BookData"