Group-theoretic methods in mechanics and applied mathematics
Author(s)
Bibliographic Information
Group-theoretic methods in mechanics and applied mathematics
(Differential and integral equations and their applications, v. 2)
Taylor & Francis, 2002
Available at 13 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 222-223) and index
Description and Table of Contents
Description
Group analysis of differential equations has applications to various problems in nonlinear mechanics and physics. For the first time, this book gives the systematic group analysis of main postulates of classical and relativistic mechanics. The consistent presentation of Lie group theory is illustrated by plentiful examples. Symmetries and conservation laws of differential equations are studied. Specific equations and problems of mechanics and physics are considered, and exact solutions are given for the following equations: dynamics of rigid body, heat transfer, wave, hydrodynamics, Thomas-Fermi and more. The author pays particular attention to the application of group analysis to developing asymptotic methods of applied mathematics in problems with small parameter. The methods are used to solve basic equations (Van Der Pol's equation, Duffing equation, etc.) encountered in the theory of nonlinear oscillations. This book is intended for a wide range of scientists, engineers and students in the fields of applied mathematics, mechanics and physics.
Table of Contents
Annotation Preface. Basic Notions of Lie Groups. Group Analysis of Basic Postulates of Classical and Relativistic Mechanics. Fundamental Theorems and Conservation Laws. Applications of Group Analysis to Problems of Mechanics and Physics. Construction of Asymptotic Expansions with the Aid of Group Methods. Nonlinear Problems in Theory of Oscillations References. Index.
by "Nielsen BookData"