Anticancer drug development
著者
書誌事項
Anticancer drug development
Academic, c2002
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Here in a single source is a complete spectrum of ideas on the development of new anticancer drugs. Containing concise reviews of multidisciplinary fields of research, this book offers a wealth of ideas on current and future molecular targets for drug design, including signal transduction, the cell division cycle, and programmed cell death. Detailed descriptions of sources for new drugs and methods for testing and clinical trial design are also provided.
目次
Contributors
Preface
Chapter 1 A Brief History of Cancer Chemotherapy
Summary
1. Introduction
2. Genotoxic (Cytotoxic) Therapy
3. Growth Control Pathways
4. Host-Tumor Interactions
5. Conclusions
References
Chapter 2 Novel Targets in the Cell Cycle and Cell Cycle Checkpoints
Summary
1. Introduction
2. Molecular Regulation of Cell Cycle Progression
3. Molecular Regulation of Cell Cycle Checkpoints
4. Rationale for Targeting Cyclin-Dependent Kinases and Cell Cycle Checkpoint Pathways
5. Agents and Strategies for Therapeutic Interference
6. Conclusions
References
Chapter 3 Growth Factor and Signal Transduction Targets for Cancer Therapy
Summary
1. Introduction
2. The ErbB Family of Receptor Tyrosine Kinases (RTKs)
3. The Ras-Raf-MEK-ERK Signaling Pathway
4. c-Src Kinase, Signal Transduction, Transformation, and Cancer
5. Akt
6. Nuclear Hormone Receptors as Targets for Cancer Therapy
7. Implications for Drug Discovery and Development
References
Chapter 4 Cell Death Pathways as Targets for Anticancer Drugs
Summary
1. Introduction
2. Two Main Pathways for Drug-Induced Apoptosis
3. Modulation of Drug-Induced Cell Death by Bcl-2 and Related Proteins
4. The Central Role of Caspases in Drug-Induced Apoptosis
5. Synergy between Death Receptors and Cytotoxic Drugs
6. The Rel/NF-kB/IkB Proteins
7. Conclusion
References
Chapter 5 Drug Resistance Pathways as Targets
Summary
1. Introduction
2. Targeting Drug Transport
3. Targeting Cellular Stress Responses
4. Targeting DNA Repair Systems
5. Conclusions
References
Chapter 6 Role of Matrix Metalloproteinases and Plasminogen Activators in Cancer Invasion and Metastasis: Therapeutic Strategies
Summary
1. Introduction
2. The Extracellular Matrix
3. Cancer Invasion and Metastasis
4. Cell Adhesion in Cancer
5. Cancer Cell Motility
6. Inflammatory Response to Cancer
7. Proteolytic Enzymes Implicated in Cancer Invasion
8. MMPIs as Novel Anticancer Agents
9. Sheddases
10. The uPA System: Proteolytic Control of MMP Activation
References
Chapter 7 Tumor Vasculature as a Target
Summary
1. Introduction
2. How to Inhibit Tumor Angiogenesis
3. Concluding Remarks
References
Chapter 8 Gene-Directed Enzyme Prodrug Therapy
Summary
1. Introduction
2. Background
3. Enzyme-Prodrug Systems
4. Tailored Prodrugs for GDEPT
5. The Activation Process
6. Augmenting the Effect
7. Exploiting the Bystander Effect and Acquired Immunity
8. Conclusions
References
Chapter 9 Tumor Antigens as Targets for Anticancer Drug Development
Summary
1. Introduction
2. Antigen Targets for Cancer Vaccines
3. Tumor Antigens as Targets for Antibody-Based Therapeutics
References
Chapter 10 Structure-Based Drug Design and its Contributions to Cancer Chemotherapy
Summary
1. Introduction
2. Antimetabolites
3. Protease Inhibitors
4. Protein Kinase Inhibitors
5. Other Targets
6. Novel Methods in Structure-Based Drug Design
7. Conclusions and Current Questions
References
Chapter 11 The Contribution of Synthetic Organic Chemistry to Anticancer Drug Development
Summary
1. Introduction
2. Early Rationality
3. The Random Screening Era: Directly from Screen to Clinic
4. Organic Synthesis Catches Up: Development of National Product Leads
5. Development of Synthetic Compounds: Structure-Activity Relationships
6. Immunotoxins: Synthetic Organic Chemistry Applied to Large Molecules
7. Organic Synthesis in Rational Design: Tumor-Activated Prodrugs of Cytokines
8. Early Genomics: Inhibitors of Transmembrane Tyrosine Kinases
9. The Genomics/Proteomics Era: Combinatorial Chemistry
10. Conclusion
References
Chapter 12 Biosynthetic Products for Anticancer Drug Design and Treatment: The Bryostatins
Summary
1. Introduction
2. Background to the Bryostatins
3. Comprehensive Review of Bryostatin Scientific and Medical Reports
References
Chapter 13 DNA-Encoded Peptide Libraries and Drug Discovery
Summary
1. Introduction
2. Methods for DNA-Encoded Peptide Display
3. Applications for DNA-Encoded Peptide Libraries
4. Conclusions
References
Chapter Mechanism-Based Highthroughput Screening for Novel Anticancer Drug Discovery
Summary
1. Importance of Mechanism-Based Targets in Postgenomic Drug Discovery
2. High-Throughput Screening
3. Assay Technologies
4. Assay Performance and Downstream Evaluation of Bits
5. Compounds for HTS
6. Examples of Compounds Identified Through Screening Approaches
7. Future HTS Developments
8. Concluding Remarks
References
Chapter 15 Tumor Cell Cultures in Drug Development
Summary
1. Introduction
2. Growth Inhibition Assays
3. Clonogenic Assays
4. Three-Dimensional Cell Cultures: Modeling Extravascular Drug Transport
5. Modeling of in Vivo Activity by in Vitro Assays
6. Perspective
References
Chapter 16 Screening Using Animal Systems
Summary
1. Introduction
2. Choice of in Vivo Systems for Large-Scale Drug Development
3. Combined in Vitro/in Vivo Testing Procedure Using Human Tumor Xenografts-The Freiburg Experience
4. Use of Transgenic Animals in the Search for New Drugs
5. Screening for Angiogenesis Inhibitors
References
Chapter 17 Relevance of Preclinical Pharmacology and Toxicology to Phase I Trial Extrapolation Techniques: Elevance of Animal Toxicology
Summary
1. Introduction
2. Historical Perspective
3. Special Toxicity Evaluations
4. Recent Examples of Drug Development at NCI
5. Predictability of Nonclinical Animal Data
6. Conclusions
References
Chapter 18 Clinical Trial Design: Incorporation of Pharmacokinetic, Pharmacodynamic, and Pharmacogenetic Principles
Summary
1. Introduction
2. Rationale for Chemotherapy Optimization
3. Pharmacokinetic-Pharmacodynamic Relationships
4. Pharmacogenetics
5. Strategies to Improve Therapeutic Index
6. Conclusion and Perspectives
References
Chapter 19 Tumor Imaging Applications in the Testing of New Drugs
Summary
1. Introduction
2. Positron Emission Tomography
3. PET in New Drug Evaluation
4. Conclusions
References
Chapter 20 Mechanistic Approaches to Phase I Clinical Trials
Summary
1. Introduction
2. Mechanism-Based Studies of Established Anticancer Agents to Assess Target Inhibition
3. Mechanistic Trial Perspectives on Anticancer Agents with Novel Mechanisms
4. Potential of PET Scanning in the Assessment of Pharmacodynamic End Points
5. Conclusion
References
Index
「Nielsen BookData」 より