Basics and theory of near-field optics
Author(s)
Bibliographic Information
Basics and theory of near-field optics
(Springer series in optical sciences, v. 86 . Progress in nano-electro-optics ; 1)(Physics and astronomy online library)
Springer, c2003
Available at 36 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
An up-to-date status report presenting the current state-of-the-art in nano-optics, this volume also deals with near-field optical microscopy. Each chapter is written by a leading scientist in the field. It will be useful to all researchers working at the forefront of near-field optics and nanoelectro-optics.
Table of Contents
High-Throughput Probes for Near-Field Optics and Their Applications.- 1 High-Throughput Probes.- 1.1 Mode Analysis in a Metallized Tapered Probe.- 1.2 Light Propagation in a Tapered Probe with Ideal Metal Cladding.- 1.3 Measurement of the Spatial Distribution of Optical Near-Field Intensity in the Tapered Probe.- 1.4 Further Increase in Throughput.- 2 Application to High-Density and High-Speed Optical Memory.- 2.1 Using an Apertured Fiber Probe.- 2.2 High-Density and High-Speed Recording Using a Pyramidal Silicon Probe on a Contact Slider.- 3 Outlook.- References.- Modulation of an Electron Beam in Optical Near-Fields.- 1 Introduction.- 2 Review of Experiments.- 2.1 Smith-Purcell Effect.- 2.2 Schwarz-Hora Effect.- 3 Basic Principle.- 4 Microgap Interaction Circuits.- 4.1 Circuit Configuration.- 4.2 Transition Rates of Electrons.- 5 Theoretical Analyses of a Microslit.- 5.1 Near-Field Distributions.- 5.2 Wave Number Spectrum.- 5.3 Numerical Simulations.- 6 Experiment.- 6.1 Experimental Setup.- 6.2 Electron Energy Spectrum.- 6.3 Modulation with Laser Field.- 6.4 Wave Number Spectrum.- 7 Multiple-Gap Circuit.- 7.1 Inverse Smith-Purcell Effect.- 7.2 Experimental Setup.- 7.3 Phase Matching Condition.- 7.4 Field Distributions.- 8 Microslit for Visible Light.- 9 Conclusion.- References.- Fluorescence Spectroscopy with Surface Plasmon Excitation.- 1 Introduction.- 2 Theoretical Considerations.- 2.1 Surface Plasmons at the Interface Between a (Noble) Metal and a Dielectric Medium.- 2.2 Optical Excitation of Surface Plasmons.- 2.3 Surface Plasmons for the Characterization of Thin Layers.- 2.4 Electromagnetic Field Distribution near the Interface.- 2.5 Fluorescent Chromophores near Metal Surfaces.- 3 Experimental.- 4 Results and Discussion.- 4.1 Experimental Verifcation of Surface Field Enhancement.- 4.2 Frontside Versus Backside Emission.- 5 Conclusions.- References.- Optical Characterization of In(Ga)As/GaAs Self-assembled Quantum Dots Using Near-Field Spectroscopy.- 1 Introduction.- 2 Relaxation Mechanism.- 3 Optical Properties of Self-assembled Quantum Dots: Far-Field Analysis.- 3.1 Photoluminescence Spectroscopy.- 3.2 Magneto-Optical Spectroscopy.- 3.3 Photoluminescence Excitation Spectrosopy.- 3.4 Raman Spectroscopy.- 4 Near-Field Optical Spectroscopy.- 4.1 Ground-State Emission.- 4.2 Interaction with Phonons.- 4.3 Carrier Relaxation.- 4.4 Dephasing of Excited Carrier.- 4.5 Spin Relaxation.- 5 Conclusion.- References.- Quantum Theoretical Approach to Optical Near-Fields and Some Related Applications.- 1 Introduction.- 1.1 Basic Idea and Massive Virtual Photon Model.- 2 Projection Operator Method.- 2.1 Definition of the Projection Operator.- 2.2 Properties of the Projection Operator.- 3 Effective Operator and Effective Interaction.- 3.1 Equation for the Operator ? and Its Approximate Solution.- 3.2 Effective Interaction Operator in an Approximation.- 4 Electromagnetic Interaction with Matter: Minimal-Coupling and Multipole Hamiltonians.- 4.1 Minimal-Coupling Hamiltonian.- 4.2 Multipole Hamiltonian.- 5 Elementary Excitation Modes and Electronic Polarization.- 5.1 Polaritons and Electronic Polarization.- 6 Optical Near-Field Interaction: Yukawa Potential.- 6.1 Relevant Microscopic Subsystem and Irrelevant Macroscopic Subsystem.- 6.2 P Space and Q Space.- 6.3 Effective Interaction in the Nanometric Subsystem.- 6.4 Effective Mass Approximation of Exciton Polaritons and Yukawa Potential.- 7 Applications.- 7.1 Single Atom Manipulation.- 7.2 Fundamental Properties of Optical Near-Field Microscopy.- 8 Outlook.- References.
by "Nielsen BookData"