Hydraulic servo-systems : modelling, identification, and control

著者

    • Jelali, Mohieddine
    • Kroll, Andreas

書誌事項

Hydraulic servo-systems : modelling, identification, and control

Mohieddine Jelali and Andreas Kroll

(Advances in industrial control)

Springer, c2003

  • : pbk

大学図書館所蔵 件 / 4

この図書・雑誌をさがす

注記

Includes bibliographical references(p.[331]-349) and index

Softcover 2nd printing (2004) have different bibliographical references pagination: p.[333]-349

内容説明・目次

内容説明

This up-to-date book details the basic concepts of many recent developments of nonlinear identification and nonlinear control, and their application to hydraulic servo-systems. It is very application-oriented and provides the reader with detailed working procedures and hints for implementation routines and software tools.

目次

1 Introduction.- 1.1 Historical View and Motivation for Hydraulic Systems.- 1.2 Aims and Focus of the Book.- 1.3 Outline of the Chapters.- 1.4 Background of the Work and Bibliographical Notes.- 2 General Description of Hydraulic Servo-systems.- 2.1 Basic Structure of Hydraulic Servo-systems.- 2.2 Description of the Components.- 2.2.1 Valves.- 2.2.2 Pumps and Actuators.- 2.2.3 Power Supplies.- 2.3 Classification of Hydraulic Servo-systems.- 2.4 Measurement and Control Devices.- 2.4.1 Control Loops.- 2.4.2 Sensors/Transducers.- 2.5 Application Examples.- 2.5.1 Hydraulically Actuated Manipulators.- 2.5.2 Hydraulic Automatic Gauge Control for Rolling Mills.- 3 Physical Fundamentals of Hydraulics.- 3.1 Physical Properties of Fluids.- 3.1.1 Viscosity and Related Quantities.- 3.1.2 Mass Density, Bulk Modulus and Related Quantities.- 3.1.3 Effective Bulk Modulus.- 3.1.4 Section Summary.- 3.2 General Equations of Fluid Motion.- 3.2.1 Continuity Equation and Pressure Transients.- 3.2.2 Navier-Stokes Equation.- 3.2.3 Bernoulli's Theorem.- 3.2.4 Section Summary.- 3.3 Flow Through Passages.- 3.3.1 Flow Establishment in Pipelines.- 3.3.2 Flow Through Orifices.- 3.3.3 Flow Through Valves.- 3.3.4 Section Summary.- 3.4 Spool Port Forces.- 3.5 Electro-hydraulic Analogy.- 3.5.1 Hydraulic Capacitance.- 3.5.2 Hydraulic Resistance.- 3.5.3 Hydraulic Inductance.- 4 Physically Based Modelling.- 4.1 Introduction.- 4.1.1 Characterisation of Subsystems.- 4.1.2 Model Complexity and Applications.- 4.2 Elementary Models.- 4.2.1 Valves.- 4.2.2 Hydraulic Cylinders.- 4.2.3 Hydraulic Pumps and Motors.- 4.2.4 Power Supplies.- 4.2.5 Pipelines.- 4.3 Typical Non-linear State-space Models.- 4.4 Structured and Simplified Models of Valve-controlled Systems.- 4.4.1 Relevance of Valve and Pipeline Dynamics.- 4.4.2 Approximation of Pressure Dynamics.- 4.4.3 Introduction of Load Pressure.- 4.4.4 Linearised Models.- 4.5 Determination of Specific Model Parameters.- 4.5.1 Static Valve Characteristics.- 4.5.2 Dynamic Valve Characteristics.- 4.5.3 Actuator Dimensions and Mass.- 4.5.4 Friction Forces.- 4.5.5 Leakage Coefficients and Valve Underlap.- 4.6 Implementation and Software Tools.- 4.6.1 Simulation of Frietion Forces.- 4.6.2 Simulation of Mechanical Saturations.- 4.6.3 Simulation Packages.- 4.7 Section Summary.- 5 Experimental Modelling (Identification).- 5.1 Introduction.- 5.1.1 Generic Identification Procedure.- 5.1.2 Linear vs. Non-linear Identification.- 5.1.3 Online vs. Offline Identification.- 5.2 Pre-identification Process.- 5.2.1 Design of Input Signals.- 5.2.2 Pre-computations.- 5.3 Overview of Model Structures.- 5.3.1 Introductory Remarks and Definitions.- 5.3.2 Review of Linear Model Structures.- 5.3.3 Non-linear Input-output Models.- 5.3.4 Non-linear State-space Models.- 5.4 Description of Selected Non-linear Model Structures.- 5.4.1 Continuous-time Special (Canonical) Models.- 5.4.2 Fuzzy Models.- 5.4.3 Artificial Neural Networks.- 5.5 Parameter Estimation Methods.- 5.5.1 Prediction Error Methods.- 5.5.2 Classical Least-squares Analysis.- 5.5.3 Orthogonal Least-squares Estimator.- 5.5.4 Maximum Likelihood Method.- 5.5.5 Bias/Nariance Dilemma and Regularisation Concepts.- 5.6 Optimisation Algorithms.- 5.6.1 Newton's Method.- 5.6.2 Damped Gauss-Newton Method.- 5.6.3 Levenberg-Marquardt Algorithrn.- 5.6.4 Computational Aspects.- 5.7 Grey-box Identification ofNon-linear Hydraulic Servo-system Models.- 5.7.1 Identification of Pressure Dynamics Model.- 5.7.2 Identification of Load Dynamics Model.- 5.7.3 Online Identification for Adaptive Control.- 5.7.4 Identification of General Models.- 5.8 Fuzzy Identification.- 5.8.1 Introduction and Model Parameter Overview.- 5.8.2 Structure Identification.- 5.8.3 Parameter Identification (Premise).- 5.8.4 Parameter Identification (Conclusion).- 5.8.5 Optimisation.- 5.9 Identification with Artificial Neural Networks.- 5.9.1 Selection of Artificial Neural Network Architectures.- 5.9.2 Estimation of Weights.- 5.9.3 Optimisation of Network Architecture (Growing/Pruning).- 5.10 Model Validation and Comparison of Model Structures.- 5.10.1 Prediction, Simulation and Cross-validation.- 5.10.2 Residual Tests.- 5.10.3 Model Structure Test Criteria.- 5.11 Implementation and Software Tools.- 5.12 Section Summary.- 6 Hydraulic Control Systems Design.- 6.1 Introduction.- 6.1.1 General Approaches.- 6.1.2 Literature Scan and Classification.- 6.2 Classical Feedback Control Design.- 6.2.1 Pressure Feedback.- 6.2.2 Acceleration Feedback.- 6.2.3 Position Feedback.- 6.2.4 Summary.- 6.3 Estimator-based State Feedback Control.- 6.3.1 Computation of the State Control Law.- 6.3.2 Selection of Pole Locations.- 6.3.3 Elimination of Steady-state Errors.- 6.3.4 Application to Hydraulic Servo-system Linear Models.- 6.4 Extensions to Linear Feedback Control.- 6.4.1 Combined Feedback and Feedforward Control.- 6.4.2 Adaptive Control.- 6.4.3 Compensation of Special (Static) Non-linearities.- 6.4.4 Conclusions and Drawbacks of Classical Approaches.- 6.5 Feedback Linearising Control.- 6.5.1 Feedback Linearisation and the Companion Form.- 6.5.2 Intuitive Concept of Input-Output Linearisation.- 6.5.3 Formalised Theory of Feedback Linearisation.- 6.5.4 Application to Hydraulic Servo-system Models.- 6.5.5 Feedback Linearisation Based on Bilinear Models.- 6.6 Approaches Similar to Feedback Linearisation.- 6.6.1 Direct Inverse Control.- 6.6.2 Cascade Load Pressure (Load Force) Control.- 6.7 Fuzzy Control.- 6.7.1 Fuzzy State Control.- 6.7.2 Fuzzy Model Predictive Control.- 6.8 Neural-network-based Control.- 6.8.1 Neural-network-based Feedback Linearisation.- 6.8.2 Control Based on Instantaneous Linearisation.- 6.9 Vibration Damping Control.- 6.9.1 Introduction.- 6.9.2 Vibration Damping Concept.- 6.9.3 Integrated Velocity Control.- 6.10 State Estimation.- 6.10.1 Velocity Estimation.- 6.10.2 Estimation of Acceleration and Friction Forces.- 6.10.3 Estimation of Extemal Forces.- 6.11 Implementation and Software Tools.- 6.12 Rapid Prototyping Tools for Control.- 6.13 Section Summary.- 7 Case Studies and Experimental Results.- 7.1 Identification and Control of a Synchronising Cylinder.- 7.1.1 System Description.- 7.1.2 Continuous-time Model in Canonical Form.- 7.1.3 Fuzzy Model Identification.- 7.1.4 Fuzzy Model Predictive Controller and Fuzzy State Feedback Controller.- 7.1.5 Neural Network (Multi-layer Perceptron) Identification.- 7.1.6 Section Summary.- 7.2 Modelling and Control of a Small Differential Cylinder.- 7.2.1 System Description.- 7.2.2 Physically Based Mode1.- 7.2.3 Linear vs. Non-linear Control.- 7.3 Control of a Big Differential Cylinder.- 7.3.1 System Description.- 7.3.2 Linear vs. Non-linear Control.- 7.4 Vibration Damping Control for a Flexible Robot.- 7.5 Vibration Damping Control for a Concrete Pump.- Appendix A Fluid Power Symbols.- Appendix B Data and Catalogue Sheets.- Appendix C Non-linear Control Background.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA60594960
  • ISBN
    • 1852336927
    • 9781447111238
  • LCCN
    2000230644
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    London
  • ページ数/冊数
    xxx, 355p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ