An introduction to nonlinear analysis
著者
書誌事項
An introduction to nonlinear analysis
Kluwer Academic, c2003
- Theory
- Applications
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
- 巻冊次
-
Theory ISBN 9780306473920
内容説明
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors.
The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
目次
Theory:- List of Figures. Preface. Acknowledgements. 1. Elements of Topology. 2. Elements of Measure Theory. 3. Banach Spaces. 4. Set-valued Analysis. 5. Nonsmooth Analysis. References. Index.
- 巻冊次
-
Applications ISBN 9780306474569
内容説明
This book offers an exposition of the main applications of Nonlinear Analysis, beginning with a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. The presentation is supplemented with the inclusion of many exercises and their solutions.
目次
Applications:- List of Figures. Preface. 1. Nonlinear Operators and Fixed Points. 2. Ordinary Differential Equations. 3. Partial Differential Equations. 4. Optimal Control and Calculus of Variations. 5. Mathematical Economics. References. Index.
「Nielsen BookData」 より