The handbook of data mining
著者
書誌事項
The handbook of data mining
(Human factors and ergonomics)
Lawrence Erlbaum Associates, 2003
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Created with the input of a distinguished International Board of the foremost authorities in data mining from academia and industry, The Handbook of Data Mining presents comprehensive coverage of data mining concepts and techniques. Algorithms, methodologies, management issues, and tools are all illustrated through engaging examples and real-world applications to ease understanding of the materials.
This book is organized into three parts. Part I presents various data mining methodologies, concepts, and available software tools for each methodology. Part II addresses various issues typically faced in the management of data mining projects and tips on how to maximize outcome utility. Part III features numerous real-world applications of these techniques in a variety of areas, including human performance, geospatial, bioinformatics, on- and off-line customer transaction activity, security-related computer audits, network traffic, text and image, and manufacturing quality.
This Handbook is ideal for researchers and developers who want to use data mining techniques to derive scientific inferences where extensive data is available in scattered reports and publications. It is also an excellent resource for graduate-level courses on data mining and decision and expert systems methodology.
目次
Contents: G. Salvendy, Foreword. N. Ye, Preface. Part I:Methodologies of Data Mining.J. Gehrke, Decision Trees. G.I. Webb, Association Rules. J. Si, B.J. Nelson, G.C. Runger, Artificial Neural Network Models for Data Mining. C.M. Borror, Statistical Analysis of Normal and Abnormal Data. D. Madigan, G. Ridgeway, Bayesian Data Analysis. S.L. Scott, Hidden Markov Processes and Sequential Pattern Mining. G. Ridgeway, Strategies and Methods for Prediction. D.W. Apley, Principal Components and Factor Analysis. E. Ip, I. Cadez, P. Smyth, Psychometric Methods of Latent Variable Modeling. J. Ghosh, Scalable Clustering. G. Das, D. Gunopulos, Time Series Similarity and Indexing. Y-C. Lai, Z. Liu, N. Ye, T. Yalcinkaya, Nonlinear Time Series Analysis. B-H. Park, H. Kargupta, Distributed Data Mining. Part II:Management of Data Mining.D. Pyle, Data Collection, Preparation, Quality, and Visualization. T. Wu, X. Li, Data Storage and Management. H. Liu, L. Yu, H. Motoda, Feature Extraction, Selection, and Construction. S.M. Weiss, T. Zhang, Performance Analysis and Evaluation. C. Clifton, Security and Privacy. R. Grossman, M. Hornick, G. Meyer, Emerging Standards and Interfaces. Part III:Applications of Data Mining.D.A. Nembhard, Mining Human Performance Data. R. Feldman, Mining Text Data. S. Shekhar, R.R. Vatsavai, Mining Geospatial Data. C. Kamath, Mining Science and Engineering Data. M.J. Zaki, Mining Data in Bioinformatics. R. Cooley, Mining Customer Relationship Management (CRM) Data. N. Ye, Mining Computer and Network Security Data. C. Djeraba, G. Fernandez, Mining Image Data. M.C. Testik, G.C. Runger, Mining Manufacturing Quality Data.
「Nielsen BookData」 より