Anisotropic Hardy spaces and wavelets
著者
書誌事項
Anisotropic Hardy spaces and wavelets
(Memoirs of the American Mathematical Society, no. 781)
American Mathematical Society, 2003
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"July 2003, volume 164, number 781 (third of 5 numbers)"
Includes bibliographical references (p. 118-122) and index
内容説明・目次
内容説明
In this paper, motivated in part by the role of discrete groups of dilations in wavelet theory, we introduce and investigate the anisotropic Hardy spaces associated with very general discrete groups of dilations. This formulation includes the classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy space theory of Calderon and Torchinsky. Given a dilation $A$, that is an $n\times n$ matrix all of whose eigenvalues $\lambda$ satisfy $\lambda>1$, define the radial maximal function $M^0_\varphi f(x): = \sup_{k\in\mathbb{Z}} (f*\varphi_k)(x), \qquad\mathtext{where} \varphi_k(x) = \det A[UNK]^{-k} \varphi(A^{-k}x).$ Here $\varphi$ is any test function in the Schwartz class with $\int \varphi \not=0$. For $0
目次
Anisotropic Hardy spaces Wavelets Notation index Bibliography.
「Nielsen BookData」 より