Anisotropic Hardy spaces and wavelets

書誌事項

Anisotropic Hardy spaces and wavelets

Marcin Bownik

(Memoirs of the American Mathematical Society, no. 781)

American Mathematical Society, 2003

この図書・雑誌をさがす
注記

"July 2003, volume 164, number 781 (third of 5 numbers)"

Includes bibliographical references (p. 118-122) and index

内容説明・目次

内容説明

In this paper, motivated in part by the role of discrete groups of dilations in wavelet theory, we introduce and investigate the anisotropic Hardy spaces associated with very general discrete groups of dilations. This formulation includes the classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy space theory of Calderon and Torchinsky. Given a dilation $A$, that is an $n\times n$ matrix all of whose eigenvalues $\lambda$ satisfy $\lambda>1$, define the radial maximal function $M^0_\varphi f(x): = \sup_{k\in\mathbb{Z}} (f*\varphi_k)(x), \qquad\mathtext{where} \varphi_k(x) = \det A[UNK]^{-k} \varphi(A^{-k}x).$ Here $\varphi$ is any test function in the Schwartz class with $\int \varphi \not=0$. For $0

目次

Anisotropic Hardy spaces Wavelets Notation index Bibliography.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
ページトップへ