Empirical studies on volatility in international stock markets
著者
書誌事項
Empirical studies on volatility in international stock markets
(Dynamic modeling and econometrics in economics and finance / series editors, Stefan Mittnik, Willi Semmler, v. 6)
Kluwer Academic, c2003
大学図書館所蔵 件 / 全14件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 151-157) and index
内容説明・目次
内容説明
Empirical Studies on Volatility in International Stock Markets describes the existing techniques for the measurement and estimation of volatility in international stock markets with emphasis on the SV model and its empirical application. Eugenie Hol develops various extensions of the SV model, which allow for additional variables in both the mean and the variance equation. In addition, the forecasting performance of SV models is compared not only to that of the well-established GARCH model but also to implied volatility and so-called realised volatility models which are based on intraday volatility measures.
The intended readers are financial professionals who seek to obtain more accurate volatility forecasts and wish to gain insight about state-of-the-art volatility modelling techniques and their empirical value, and academic researchers and students who are interested in financial market volatility and want to obtain an updated overview of the various methods available in this area.
目次
List of Figures. List of Tables.
1: Introduction.
2: Asset Return Volatility Models. 2.1. Empirical Stylised Facts of Stock Index Return Series. 2.2. Time-Varying Volatility Models. 2.3. Empirical Applications of Time Varying Volatility Models.
3: The Stochastic Volatility in Mean Model: Empirical Evidence from International Stock Markets. 3.1. Introduction. 3.2. The Stochastic Volatility in Mean Model. 3.3. Some Theory on the Relationship between Returns and Volatility. 3.4. Data. 3.5. Estimation Results for the SVM Model and Some Diagnostics. 3.6. Some Comparisons with GARCH-M Estimation Results. 3.7. Summary and Conclusions.
4: Forecasting with Volatility Models. 4.1. Volatility Models and Their Forecasts. 4.2. An Empirical Study of Six International Stock Indices.
5: Implied Volatility. 5.1. The Black-Scholes Option Pricing Model. 5.2. Forecasting with Implied Volatility: Empirical Evidence.
6: Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility. 6.1. Introduction. 6.2. Model Specifications. 6.3. Data Description and Empirical In-Sample Results. 6.4. Volatility Forecasting Methodology. 6.5. Out-of-Sample Results. 6.6. Summary and Conclusions.
7: Stock Index Volatility Forecasting with High-Frequency Data. 7.1. Introduction. 7.2. Stock Return Data and Volatility. 7.3. Realised Volatility Models. 7.4. Daily Time-Varying Volatility Models. 7.5. Forecasting Methodology and Evaluation Criteria. 7.6. Empirical Results. 7.7. Summary and Conclusions.
8: Conclusions.
Appendices: A.1. Model. A.2. Likelihood Evaluation Using Importance Sampling. A.3. Approximating Gaussian Model Used for Importance Sampling. A.4. Monte Carlo Evidence of Estimation Procedure.
B: Estimation of the SVX Models. B.1. The SVX Model in State Space Form. B.2. Parameter Estimation by Simulated Maximum Likelihood. B.3. Computational Implementation.
C: Data and Programs.
Bibliography. Index.
「Nielsen BookData」 より