Elastic-plastic mixed-mode fracture criteria and parameters
著者
書誌事項
Elastic-plastic mixed-mode fracture criteria and parameters
(Lecture notes in applied mechanics / series editor Friedrich Pfeiffer, v. 7)
Springer, c2003
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
Bibliography: p. [235]-243
内容説明・目次
内容説明
My wife Tatyana, daughter Mariya, son Alexandr It is well known that the mixed-mode conditions appear when the direction of the applied loading does not coincide with the orthogonal K,-Kn-Km space. In general, in the industrial practice the mixed-mode fracture and the mixed-mode crack growth are more likely to be considered the rule than the exception. Miller et al. considers that cracks can grow due to a mixture of processes (ductile and brittle), mechanisms (static, fatigue, creep) and loading modes (tension, torsion, biax ial/multiaxial). Additionally mixed-mode crack-extension can be affected by many other considerations such as artifact geometry (thin plates, thick shells, and the size, shape and orientation of the defect), environmental effects (temperature, gaseous and liquid surroundings), material state (crystallographic structure, heat treatment and route of manufacture) and stress conditions (out-of-phase and ran dom loading effects). The main feature of the mixed-mode fracture is that the crack growth would no longer take place in a self-similar manner and does not follow a universal trajec tory that is it will grow on a curvilinear path. There are various fracture criteria, which predict the behavior of cracks in brittle and ductile materials loaded in combined modes. Linear elastic fracture mechanics (LEFM) criteria predict basi cally the same direction for crack propagation. Cracks in brittle materials have been shown to propagate normal to the maximum tangential stress. In ductile ma terials yielding occurs at the crack tip and LEFM is no longer applicable.
目次
I. Mixed-mode crack behavior under plane stress and plane strain small scale yielding.- 1.1 Governing equations.- 1.1.1 Plane strain.- 1.1.2 Plane stress.- 1.1.3 Boundary conditions for different types of dominating fracture mechanism.- 1.2 Numerical iterative method for solving the nonlinear eigenvalue problems.- 1.3 Application of J-integral to plastic stress intensity factor determination.- 1.3.1 Plane strain.- 1.3.2 Plane stress.- 1.4 Family of crack-tip fields characterized by dominating fracture mechanism.- 1.4.1 Plane strain.- 1.4.2 Plane stress.- 1.5 Finite element analysis of stress distributions at the crack tip.- 1.6 Conditions of existence for mixed mode fracture.- II. Modeling of crack growth by fracture damage zone.- 2.1 A modified strain-energy density approach.- 2.1.1 Elastic strain energy density.- 2.1.2 Plastic strain energy density.- 2.2 Strain energy density distributions.- 2.3 Fracture damage zone.- 2.3.1 A brief review.- 2.3.2 Fracture damage zone size.- 2.4 Relation between cracks growth resistance and fracture process parameters in elastic-plastic solids.- 2.5 Elastic-plastic approach for modeling of fatigue crack behavior.- 2.6 Some aspects of the fatigue crack path prediction.- III. Experimental investigation of fatigue crack propagation.- 3.1 Specimens for study of fatigue and fracture processes and material properties.- 3.2 Method of interpretation for cyclic crack resistance characteristics.- 3.3 Effect of biaxial stress on fatigue crack growth in aluminum alloys.- 3.4 Influence of mixed mode loading on fatigue fracture of high strength steels.- 3.5 Fatigue crack growth trajectories for the aluminum alloys and steels.- IV. Models for predicting crack growth rate and fatigue life.- 4.1 Crack growth direction criterion.- 4.2 Criteria of equivalent plastic strain under a complex stress state.- 4.3 A model for predicting crack growth rate under biaxial loads.- 4.4 An analysis of crack growth under complex stress state with taking into account their orientation.- V. Practical applications.- 5.1 Fracture analysis of gas turbine engine disks and simulation modeling of operational conditions.- 5.1.1 Stress state analysis.- 5.1.2 Crack growth model.- 5.1.3 Full size disk experiments.- 5.2 Modeling fatigue crack behavior in a pressurized cylinder.- 5.2.1 Crack growth model.- 5.2.2 Results and discussion.- Reference.
「Nielsen BookData」 より