Radially symmetric patterns of reaction-diffusion systems
著者
書誌事項
Radially symmetric patterns of reaction-diffusion systems
(Memoirs of the American Mathematical Society, no. 786)
American Mathematical Society, 2003
大学図書館所蔵 件 / 全13件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Volume 165, number 786 (third of 4 numbers)."
Includes bibliographical references (p. 83-86)
内容説明・目次
内容説明
In this paper, bifurcations of stationary and time-periodic solutions to reaction-diffusion systems are studied. We develop a center-manifold and normal form theory for radial dynamics which allows for a complete description of radially symmetric patterns. In particular, we show the existence of localized pulses near saddle-nodes, critical Gibbs kernels in the cusp, focus patterns in Turing instabilities, and active or passive target patterns in oscillatory instabilities.
目次
Introduction Instabilities in one space dimension Stationary radially symmetric patterns Time-periodic radially symmetric patterns Discussion Bibliography.
「Nielsen BookData」 より