Data analysis and graphics using R : an example-based approach
著者
書誌事項
Data analysis and graphics using R : an example-based approach
(Cambridge series on statistical and probabilistic mathematics)
Cambridge University Press, 2003
大学図書館所蔵 全44件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [346]-351) and indexes
内容説明・目次
内容説明
Modern statistical software systems provide sophisticated tools for researchers who need to manipulate and display their data. Using such systems requires training both in the software itself and in the statistical methods that it relies on. Concentrating on the freely available R system, this book demonstrates recently implemented approaches and methods in statistical analysis. The authors introduce elementary concepts in statistics through examples of real-world data analysis drawn from the authors' experience, both as teachers and as consultants. R code and data sets for all examples are available on the Internet. This emphasis on practical methodology combined with a tutorial approach makes the book accessible to anyone with a knowledge of undergraduate statistics, whether an upper-graduate student, a researcher, or a practising scientist or statistician. The methods demonstrated are suitable for use in a wide variety of disciplines, from social sciences to medicine, engineering and science.
目次
- Introduction
- 1. A brief introduction to R
- 2. Styles of data analysis
- 3. Statistical models
- 4. Introduction to formal inference
- 5. Regression with a single predictor
- 6. Multiple linear regression
- 7. Exploiting the linear model framework
- 8. Logistic regression and other generalised linear models
- 9. Multi-level models, time series and repeated measures
- 10. Tree-based classification and regression
- 11. Multivariate data exploration and discrimination
- 12. The R system - additional topics
- 13. Epilogue - models
- Appendix: S-plus differences
- Bibliography
- Acknowledgements
- Index.
「Nielsen BookData」 より