書誌事項

Combinatorics

Russell Merris

(Wiley-Interscience series in discrete mathematics and optimization)

John Wiley, c2003

2nd ed

大学図書館所蔵 件 / 12

この図書・雑誌をさがす

注記

"Wiley-Interscience"--T.p.

Includes bibliographical references and indexes

内容説明・目次

内容説明

A mathematical gem-freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition: Lively and engaging writing style Timely and appropriate examples Numerous well-chosen exercises Flexible modular format Optional sections and appendices Highlights of Second Edition enhancements: Smoothed and polished exposition, with a sharpened focus on key ideas Expanded discussion of linear codes New optional section on algorithms Greatly expanded hints and answers section Many new exercises and examples

目次

Preface ix Chapter 1 The Mathematics of Choice 1 1.1. The Fundamental Counting Principle 2 1.2. Pascal's Triangle 10 * 1.3. Elementary Probability 21 * 1.4. Error-Correcting Codes 33 1.5. Combinatorial Identities 43 1.6. Four Ways to Choose 56 1.7. The Binomial and Multinomial Theorems 66 1.8. Partitions 76 1.9. Elementary Symmetric Functions 87 * 1.10. Combinatorial Algorithms 100 Chapter 2 The Combinatorics of Finite Functions 117 2.1. Stirling Numbers of the Second Kind 117 2.2. Bells, Balls, and Urns 128 2.3. The Principle of Inclusion and Exclusion 140 2.4. Disjoint Cycles 152 2.5. Stirling Numbers of the First Kind 161 Chapter 3 Polya's Theory of Enumeration 175 3.1. Function Composition 175 3.2. Permutation Groups 184 3.3. Burnside's Lemma 194 3.4. Symmetry Groups 206 3.5. Color Patterns 218 3.6. Polya's Theorem 228 3.7. The Cycle Index Polynomial 241 Chapter 4 Generating Functions 253 4.1. Difference Sequences 253 4.2. Ordinary Generating Functions 268 4.3. Applications of Generating Functions 284 4.4. Exponential Generating Functions 301 4.5. Recursive Techniques 320 Chapter 5 Enumeration in Graphs 337 5.1. The Pigeonhole Principle 338 * 5.2. Edge Colorings and Ramsey Theory 347 5.3. Chromatic Polynomials 357 * 5.4. Planar Graphs 372 5.5. Matching Polynomials 383 5.6. Oriented Graphs 394 5.7. Graphic Partitions 408 Chapter 6 Codes and Designs 421 6.1. Linear Codes 422 6.2. Decoding Algorithms 432 6.3. Latin Squares 447 6.4. Balanced Incomplete Block Designs 461 Appendix A1 Symmetric Polynomials 477 Appendix A2 Sorting Algorithms 485 Appendix A3 Matrix Theory 495 Bibliography 501 Hints and Answers to Selected Odd-Numbered Exercises 503 Index of Notation 541 Index 547

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA63912723
  • ISBN
    • 047126296X
  • LCCN
    2002192250
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Hoboken, NJ
  • ページ数/冊数
    xi, 556 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ