Vibrations and stability : advanced theory, analysis, and tools
著者
書誌事項
Vibrations and stability : advanced theory, analysis, and tools
(Springer complexity)
Springer, c2003
2nd ed
大学図書館所蔵 全14件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [381]-392) and index
Series title from cover
内容説明・目次
内容説明
An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems.
目次
1 Vibration Basics.- 2 Eigenvalue Problems of Vibrations And Stability.- 3 Nonlinear Vibrations: Classical Local Theory.- 4 Nonlinear Multiple-DOF Systems: Local Analysis.- 5 Bifurcations.- 6 Chaotic Vibrations.- 7 Special Effects of High-Frequency Excitation.- Appendix A - Performing Numerical Simulations.- A.1 Solving Differential Equations.- A.2 Computing Chaos-Related Quantities.- A.3 Interfacing with the ODE-Solver.- A.4 Locating Software on the Internet.- Appendix B - Major Exercises.- B.1 Tension Control of Rotating Shafts.- B.1.1 Mathematical Model.- B.1.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.1.3 Discretisations, Choice of Control Law.- B.1.5 Quantitative Analysis of the Controlled System.- B.1.6 Using a Dither Signal for Open-Loop Control.- B.1.7 Numerical Analysis of the Controlled System.- B.1.8 Conclusions.- B.2 Vibrations of a Spring-Tensioned Beam.- B.2.1 Mathematical Model.- B.2.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.2.3 Discrete Models.- B.2.4 Local Bifurcation Analysis for the Unloaded System.- B.2.5 Quantitative Analysis of the Loaded System.- B.2.6 Numerical Analysis.- B.2.7 Conclusions.- B.3 Dynamics of a Microbeam.- B.3.1 System Description.- B.3.2 Mathematical Model.- B.3.3 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.3.4 Discrete Models, Mode Shape Expansion.- B.3.5 Local Bifurcation Analysis for the Statically Loaded System.- B.3.6 Quantitative Analysis of the Loaded System.- B.3.7 Numerical Analysis.- B.3.8 Conclusions.- Appendix C - Mathematical Formulas.- C.1 Formulas Typically Used in Perturbation analysis.- C.1.1 Complex Numbers.- C.1.2 Powers of Two-Term Sums.- C.1.3 Dirac's Delta Function (?).- C.1.4 Averaging Integrals.- C.1.5 Fourier Series of a Periodic Function.- C.2 Formulas for Stability Analysis.- C.2.1 The Routh-Hurwitz Criterion.- C.2.2 Mathieu's Equation:Stability of the Zero-Solution.- Appendix D - Vibration Modes and Frequencies for Structural Elements.- D.1 Rods.- D.1.1 Longitudinal Vibrations.- D.1.2 Torsional Vibrations.- D.2 Beams.- D.2.1 Bernoulli-Euler Theory.- D.2.2 Timoshenko Theory.- D.3 Rings.- D.3.1 In-Plane Bending.- D.3.2 Out-of-Plane Bending.- D.3.3 Extension.- D.4 Membranes.- D.4.1 Rectangular Membrane.- D.4.2 Circular Membrane.- D.5 Plates.- D.5.1 Rectangular Plate.- D.5.2 Circular Plate.- D.6 Other Structures.- Appendix E - Properties of Engineering Materials.- E.1 Friction and Thermal Expansion Coefficients.- E.2 Density and Elasticity Constants.- References.
「Nielsen BookData」 より