Vibrations and stability : advanced theory, analysis, and tools
Author(s)
Bibliographic Information
Vibrations and stability : advanced theory, analysis, and tools
(Springer complexity)
Springer, c2003
2nd ed
Available at 14 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [381]-392) and index
Series title from cover
Description and Table of Contents
Description
An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems.
Table of Contents
1 Vibration Basics.- 2 Eigenvalue Problems of Vibrations And Stability.- 3 Nonlinear Vibrations: Classical Local Theory.- 4 Nonlinear Multiple-DOF Systems: Local Analysis.- 5 Bifurcations.- 6 Chaotic Vibrations.- 7 Special Effects of High-Frequency Excitation.- Appendix A - Performing Numerical Simulations.- A.1 Solving Differential Equations.- A.2 Computing Chaos-Related Quantities.- A.3 Interfacing with the ODE-Solver.- A.4 Locating Software on the Internet.- Appendix B - Major Exercises.- B.1 Tension Control of Rotating Shafts.- B.1.1 Mathematical Model.- B.1.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.1.3 Discretisations, Choice of Control Law.- B.1.5 Quantitative Analysis of the Controlled System.- B.1.6 Using a Dither Signal for Open-Loop Control.- B.1.7 Numerical Analysis of the Controlled System.- B.1.8 Conclusions.- B.2 Vibrations of a Spring-Tensioned Beam.- B.2.1 Mathematical Model.- B.2.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.2.3 Discrete Models.- B.2.4 Local Bifurcation Analysis for the Unloaded System.- B.2.5 Quantitative Analysis of the Loaded System.- B.2.6 Numerical Analysis.- B.2.7 Conclusions.- B.3 Dynamics of a Microbeam.- B.3.1 System Description.- B.3.2 Mathematical Model.- B.3.3 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.3.4 Discrete Models, Mode Shape Expansion.- B.3.5 Local Bifurcation Analysis for the Statically Loaded System.- B.3.6 Quantitative Analysis of the Loaded System.- B.3.7 Numerical Analysis.- B.3.8 Conclusions.- Appendix C - Mathematical Formulas.- C.1 Formulas Typically Used in Perturbation analysis.- C.1.1 Complex Numbers.- C.1.2 Powers of Two-Term Sums.- C.1.3 Dirac's Delta Function (?).- C.1.4 Averaging Integrals.- C.1.5 Fourier Series of a Periodic Function.- C.2 Formulas for Stability Analysis.- C.2.1 The Routh-Hurwitz Criterion.- C.2.2 Mathieu's Equation:Stability of the Zero-Solution.- Appendix D - Vibration Modes and Frequencies for Structural Elements.- D.1 Rods.- D.1.1 Longitudinal Vibrations.- D.1.2 Torsional Vibrations.- D.2 Beams.- D.2.1 Bernoulli-Euler Theory.- D.2.2 Timoshenko Theory.- D.3 Rings.- D.3.1 In-Plane Bending.- D.3.2 Out-of-Plane Bending.- D.3.3 Extension.- D.4 Membranes.- D.4.1 Rectangular Membrane.- D.4.2 Circular Membrane.- D.5 Plates.- D.5.1 Rectangular Plate.- D.5.2 Circular Plate.- D.6 Other Structures.- Appendix E - Properties of Engineering Materials.- E.1 Friction and Thermal Expansion Coefficients.- E.2 Density and Elasticity Constants.- References.
by "Nielsen BookData"