Optical near fields : introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale

Author(s)

Bibliographic Information

Optical near fields : introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale

M. Ohtsu, K. Kobayashi

(Advanced texts in physics)

Springer, c2004

Available at  / 14 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. [197]-200) and index

Description and Table of Contents

Description

Ohstu and Kobayashi crafted Optical Near Fields on the basis of their hypothesis that the full potential for utilizing optical near fields can be realized only with novel nanometric processing, functions, and manipulation, i.e., by controlling the intrinsic interaction between nanometer-sized optical near fields and material systems, and further, atoms. The book presents physically intuitive concepts and theories for students, engineers, and scientists engaged in research in nanophotonics and atom photonics.

Table of Contents

1 Deadlocks in Conventional Optical Science and Technology.- 2 Breaking Through the Diffraction Limit by Optical Near Field.- 3 Past and Present of Near-Field Optics.- 4 Dipole-Dipole Interaction Model of Optical Near Field.- 5 Electrodynamics of Oscillating Electric Dipoles.- 6 Self-Consistent Method Using a Propagator.- 7 Picture of Optical Near Field Based on Electric Charges Induced on the Surface and Polarized Currents.- 8 Picture of Optical Near Field as a Virtual Cloud Around a Nanometric System Surrounded by a Macroscopic System.- 9 Application to Nanophotonics and Atom Photonics.- A Basic Formulae of Electromagnetism.- A.1 Maxwell's Equations and Related Formulae.- A.1.1 Static Electric and Magnetic Fields.- A.1.2 Dynamic Electric and Magnetic Fields.- A.1.3 Electromagnetic Fields Generated by an Electric Dipole.- A.1.4 Power Radiated from an Electric Dipole.- B Refractive Index of a Metal.- C Exciton-Polariton.- D Derivation of Equations in Chapter 8.- D.1 Derivation of (8.1).- D.2 Derivation of (8.2).- D.3 Derivation of (8.3).- D.4 Projection Operator Method and Derivation of (8.5).- D.4.1 Definition of a Projection Operator.- D.4.2 Derivation of an Effective Operator.- D.6 Derivation of (8.9).- D.7 Derivation of (8.12).- Solutions to Problems.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top