Earthquake science and seismic risk reduction

著者

    • Nato Advanced Research Workshop on State of Scientific Knowledge Regarding Earthquake Occurrence and Implications for Public Policy
    • Mulargia, Francesco

書誌事項

Earthquake science and seismic risk reduction

edited by Francesco Mulargia and Robert J. Geller

(NATO science series, 4, earth and environmental sciences : v. 32)

Kluwer Academic, 2003

  • pbk.
  • hbk.

大学図書館所蔵 件 / 9

この図書・雑誌をさがす

注記

Selected conference papers

"This volume is based on the livelydiscussions at the NATO Advanced Research Workshop (ARW) on 'State of scientific knowledge regarding earthquake occurrence and implications for public policy' held in Arbus, Sardinia, from October 14 to October 19, 2000" -- pref.

内容説明・目次

巻冊次

hbk. ISBN 9781402017773

内容説明

This book can be used as a reference by both specialists (e.g., seismologists, earthquake engineers, and physicists) and related professionals (e.g., government officials, land use planners). Scientific issues (the physics of earthquake occurrence and implications for predictability), applications (procedures for time-independent hazard estimates, and time-dependent forecasts solidly grounded on recent progress in earthquake physics, as well as unresolved scientific questions pertaining to such estimates), and policy issues (practical measures for seismic risk reduction in Greece and Turkey, and how governments should view earthquake prediction) are comprehensively covered. Each of the eight chapters is followed by a thorough set of references to recent literature. CD-ROM with color figures is included.
巻冊次

pbk. ISBN 9781402017780

内容説明

What is the first thing that ordinary people, for whom journalists are the proxy, ask when they meet a seismologist? It is certainly nothing technical like "What was the stress drop of the last earthquake in the Imperial Valley?" It is a sim ple question, which nevertheless summarizes the real demands that society has for seismology. This question is "Can you predict earthquakes?" Regrettably, notwithstanding the feeling of omnipotence induced by modem technology, the answer at present is the very opposite of "Yes, of course". The primary motivation for the question "Can you predict earthquakes?" is practical. No other natural phenomenon has the tremendous destructive power of a large earthquake, a power which is rivaled only by a large scale war. An earth quake in a highly industrialized region is capable of adversely affecting the econ omy of the whole world for several years. But another motivation is cognitive. The aim of science is 'understanding' nature, and one of the best ways to show that we understand a phenomenon is the ability to make accurate predictions.

目次

1 Modeling earthquakes.- 1.1 Phenomenology.- 1.1.1 The lack of a coherent phenomenology.- 1.2 Retrospective selection bias.- 1.2.1 Using statistics to find the 'truth'.- 1.2.2 Hypothesis testing.- 1.2.3 Data mining and fishing expeditions.- 1.2.4 Post hoc correction of optimal retrospective selections.- 1.2.5 The safest antidote to false discoveries: forward vahdation.- 1.3 Model building.- 1.3.1 Choosing among models.- 1.3.2 Deterministic, complex and stochastic cases.- 1.3.3 Complex systems.- 1.4 Prediction.- 1.4.1 Definitions of prediction.- 1.5 References.- 2 The classical view of earthquakes.- 2.1 A geologist's view of earthquakes.- 2.1.1 Geology, geomorphology and earthquakes.- 2.1.2 Paleontology and earthquakes.- 2.1.3 Petrology and earthquakes.- 2.1.4 Applied geology and seismic hazard.- 2.2 Seismology and geodesy.- 2.2.1 Introduction.- 2.2.2 Inversion for the Centroid and Moment Tensor (CMT).- 2.2.3 Geodetic constraints.- 2.2.4 Space-time history of faulting and physical implications.- 2.3 Scaling laws for earthquakes.- 2.3.1 The Gutenberg-Richter law.- 2.3.2 Empirical roots of the Gutenberg-Richter law.- 2.3.3 Moment-frequency relation.- 2.4 The elastic rebound model and its successors.- 2.4.1 The time-and slip-predictable models.- 2.4.2 The seismic gap hypothesis.- 2.4.3 The characteristic earthquake model.- 2.5 Nucleation or not?.- 2.5.1 Is there any evidence for a nucleation phase?.- 2.5.2 Models of a hypothetical preparatory process.- 2.5.3 Theoretical models.- 2.6 What is an earthquake? Fracture, slip or both?.- 2.6.1 Laboratory-based hypotheses.- 2.6.2 Stick-slip friction.- 2.6.3 Fracture mechanics.- 2.6.4 Damage mechanics.- 2.7 Stress: the basic yet unknown quantity.- 2.7.1 Stress in the Earth's crust.- 2.8 Earthquake energy balance.- 2.8.1 Earthquake energy function.- 2.8.2 Earthquakes as a three stage process.- 2.8.3 The size of the earthquake.- 2.9 References.- 3 The Physics of complex systems: appHcations to earthquake.- 3.1 Phase transitions, criticality, and self-similarity.- 3.1.1 Subcriticality and supercriticality.- 3.1.2 Universality.- 3.2 Scale invariance: the analytical approach.- 3.3 Scale invariance: the geometrical approach.- 3.3.1 Measuring an object's fractal dimension.- 3.3.2 Multifractals.- 3.3.3 The empirical origin of fractahty.- 3.3.4 Deterministic low-dimensional chaos: hope for predictability?.- 3.4 Characterizing scale-invariant systems.- 3.4.1 Log-log plots.- 3.4.2 Wavelets.- 3.5 Modeling scale invariant systems.- 3.5.1 Percolation.- 3.5.2 Cellular automata.- 3.5.3 Earthquakes as SOC.- 3.6 The origin of power laws and fractality.- 3.6.1 Scale invariance: artifacts and reality.- 3.6.2 Do power laws always mean geometrical scale invariance?.- 3.6.3 General features of self-organizing cellular automata earth- quake models.- 3.7 Problems in applying CA models to earthquakes.- 3.8 Dynamical implications.- 3.8.1 Intermittent criticality.- 3.8.2 Power law evolution before failure - Voight's law.- 3.9 Statistical implications.- 3.10 Implications for predictability.- 3.11 References.- 4 Time-independent hazard.- 4.1 Seismic Hazard assessment and site effects evaluation at regional scale.- 4.1.1 Seismic hazard estimates.- 4.1.2 Site effects estimates: how precise schould they be?.- 4.1.3 Conclusions.- 4.2 USGS and partners: approaches to estimating earthquake probabilities.- 4.2.1 Basic principles.- 4.2.2 Earthquake recurrence rates for national and international seismic hazard maps.- 4.2.3 San Francisco Bay region.- 4.2.4 Earthquake likelihood models in Southern California.- 4.2.5 The New Madrid Seismic Zone.- 4.2.6 Foreshocks and aftershocks.- 4.2.7 Conclusions.- 4.3 References.- 5 Time-dependent hazard estimates and forecasts, and their uncertainties.- 5.1 USGS and partners: research on earthquake probabilities.- 5.1.1 Physics, recurrence, and probabilities.- 5.1.2 Earthquake triggering.- 5.1.3 Conclusions.- 5.2 Probabilistic forecasting of seismicity.- 5.2.1 Long-term seismic hazard estimates.- 5.2.2 Short-term seismic hazard estimates.- 5.2.3 Experimental short-term forecasts for Western Pacific.- 5.2.4 Experimental forecasts in Southern California.- 5.2.5 Conclusions.- 5.3 What is the chance of an earthquake?.- 5.3.1 Interpreting probability.- 5.3.2 The USGS earthquake forecast.- 5.3.3 A view from the past.- 5.3.4 Conclusions.- 5.4 References.- 6 Gathering new data.- 6.1 Space geodesy.- 6.1.1 The observables of space geodesy.- 6.1.2 Reference system and deformation concepts.- 6.1.3 The observing networks.- 6.1.4 An introduction to SAR imaging and SAR interferometry.- 6.1.5 SAR and digital elevation models.- 6.1.6 Differential interferometry.- 6.1.7 Permanent scatterers.- 6.1.8 Integration of GPS and SAR data: an example in Southern California.- 6.2 Paleoseismic data.- 6.2.1 Coastal indicators of coseismic vertical movements.- 6.2.2 Case studies.- 6.2.3 Conclusions.- 6.3 References.- 7 Seismic risk mitigation.- 7.1 Greek case study.- 7.1.1 The seismic risk in Greece.- 7.1.2 Activities for seismic risk mitigation and current Greek experience.- 7.1.3 Risk mitigation policies.- 7.1.4 Contribution of research to seismic risk mitigation.- 7.1.5 Concluding remarks.- 7.2 Istanbul case study.- 7.2.1 Background and general considerations.- 7.2.2 Active tectonics and seismicity.- 7.2.3 Earthquake hazard assessments.- 7.2.4 Vulnerabihty analysis.- 7.2.5 Earthquake risk to building population.- 7.2.6 Risk mitigation.- 7.3 References.- 8 Earthquake prediction and public policy.- 8.1 Introduction.- 8.1.1 Why should we care now?.- 8.1.2 Ethical considerations.- 8.1.3 Definitions of earthquake prediction.- 8.1.4 Proposals for earthquake prediction research.- 8.2 Views of social scientists.- 8.2.1 Report of NAS Panel in 1975.- 8.2.2 Social science research.- 8.2.3 Costs and benefits of short-term earthquake prediction.- 8.3 U.S. earthquake prediction program.- 8.3.1 Current Federal and State laws.- 8.3.2 NEPEC.- 8.3.3 Parkfield earthquake prediction experiment.- 8.4 Japan's earthquake prediction program.- 8.4.1 Long-term forecast of the 'Tokai earthquake'.- 8.4.2 System for short-term prediction.- 8.4.3 Public perception.- 8.5 Pubhc reactions to predictions.- 8.5.1 Codes of practice for earthquake prediction.- 8.5.2 Publicly announced predictions.- 8.5.3 Common features.- 8.5.4 Countermeasures.- 8.6 Discussion and conclusion.- 8.7 References.- Acknowledgments.- Addresses of principal contributors.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ