Networks of learning automata : techniques for online stochastic optimization
著者
書誌事項
Networks of learning automata : techniques for online stochastic optimization
Kluwer Academic, c2004
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [253]-263) and index
内容説明・目次
内容説明
Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications.
目次
1. Introduction.- 1.1 Machine Intelligence and Learning.- 1.2 Learning Automata.- 1.3 The Finite Action Learning Automaton (FALA).- 1.3.1 The Automaton.- 1.3.2 The Random Environment.- 1.3.3 Operation of FALA.- 1.4 Some Classical Learning Algorithms.- 1.4.1 Linear Reward-Inaction (LR?I) Algorithm.- 1.4.2 Other Linear Algorithms.- 1.4.3 Estimator Algorithms.- 1.4.4 Simulation Results.- 1.5 The Discretized Probability FALA.- 1.5.1 DLR?I Algorithm.- 1.5.2 Discretized Pursuit Algorithm.- 1.6 The Continuous Action Learning Automaton (CALA).- 1.6.1 Analysis of the Algorithm.- 1.6.2 Simulation Results.- 1.6.3 Another Continuous Action Automaton.- 1.7 The Generalized Learning Automaton (GLA).- 1.7.1 Learning Algorithm.- 1.7.2 An Example.- 1.8 The Parameterized Learning Automaton (PLA).- 1.8.1 Learning Algorithm.- 1.9 Multiautomata Systems.- 1.10 Supplementary Remarks.- 2. Games of Learning Automata.- 2.1 Introduction.- 2.2 A Multiple Payoff Stochastic Game of Automata.- 2.2.1 The Learning Algorithm.- 2.3 Analysis of the Automata Game Algorithm.- 2.3.1 Analysis of the Approximating ODE.- 2.4 Game with Common Payoff.- 2.5 Games of FALA.- 2.5.1 Common Payoff Games of FALA.- 2.5.2 Pursuit Algorithm for a Team of FALA.- 2.5.3 Other Types of Games.- 2.6 Common Payoff Games of CALA.- 2.6.1 Stochastic Approximation Algorithms and CALA.- 2.7 Applications.- 2.7.1 System Identification.- 2.7.2 Learning Conjunctive Concepts.- 2.8 Discussion.- 2.9 Supplementary Remarks.- 3. Feedforward Networks.- 3.1 Introduction.- 3.2 Networks of FALA.- 3.3 The Learning Model.- 3.3.1 G-Environment.- 3.3.2 The Network.- 3.3.3 Network Operation.- 3.4 The Learning Algorithm.- 3.5 Analysis.- 3.6 Extensions.- 3.6.1 Other Network Structures.- 3.6.2 Other Learning Algorithms.- 3.7 Convergence to the Global Maximum.- 3.7.1 The Network.- 3.7.2 The Global Learning Algorithm.- 3.7.3 Analysis of the Global Algorithm.- 3.8 Networks of GLA.- 3.9 Discussion.- 3.10 Supplementary Remarks.- 4. Learning Automata for Pattern Classification.- 4.1 Introduction.- 4.2 Pattern Recognition.- 4.3 Common Payoff Game of Automata for PR.- 4.3.1 Pattern Classification with FALA.- 4.3.2 Pattern Classification with CALA.- 4.3.3 Simulations.- 4.4 Automata Network for Pattern Recognition.- 4.4.1 Simulations.- 4.4.2 Network of Automata for Learning Global Maximum.- 4.5 Decision Tree Classifiers.- 4.5.1 Learning Decision Trees using GLA and CALA.- 4.5.2 Learning Piece-wise Linear Functions.- 4.6 Discussion.- 4.7 Supplementary Remarks.- 5. Parallel Operation of Learning Automata.- 5.1 Introduction.- 5.2 Parallel Operation of FALA.- 5.2.1 Analysis.- 5.2.2 ?-optimality.- 5.2.3 Speed of Convergence and Module Size.- 5.2.4 Simulation Studies.- 5.3 Parallel Operation of CALA.- 5.4 Parallel Pursuit Algorithm.- 5.4.1 Simulation Studies.- 5.5 General Procedure.- 5.6 Parallel Operation of Games of FALA.- 5.6.1 Analysis.- 5.6.2 Common Payoff Game.- 5.7 Parallel Operation of Networks of FALA.- 5.7.1 Analysis.- 5.7.2 Modules of Parameterized Learning Automata (PLA).- 5.7.3 Modules of Generalized Learning Automata (GLA).- 5.7.4 Pattern Classification Example.- 5.8 Discussion.- 5.9 Supplementary Remarks.- 6. Some Recent Applications.- 6.1 Introduction.- 6.2 Supervised Learning of Perceptual Organization in Computer Vision.- 6.3 Distributed Control of Broadcast Communication Networks.- 6.4O ther Applications.- 6.5 Discussion.- Epilogue.- Appendices.- A The ODE Approach to Analysis of Learning Algorithms.- A.I Introduction.- A.2 Derivation of the ODE Approximation.- A.2.1 Assumptions.- A.2.2 Analysis.- A.3 Approximating ODEs for Some Automata Algorithms.- A.3.2 The CALA Algorithm.- A.3.3 Automata Team Algorithms.- A.4 Relaxing the Assumptions.- B Proofs of Convergence for Pursuit Algorithm.- B.1 Proof of Theorem 1.1.- B.2 Proof of Theorem 5.7.- C Weak Convergence and SDE Approximations.- C.I Introduction.- C.2 Weak Convergence.- C.3 Convergence to SDE.- C.3.1 Application to Global Algorithms.- C.4 Convergence to ODE.- References.
「Nielsen BookData」 より