Combinatorial designs : constructions and analysis

書誌事項

Combinatorial designs : constructions and analysis

Douglas R. Stinson

Springer, c2004

大学図書館所蔵 件 / 17

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [287]-293) and index

内容説明・目次

内容説明

Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals in computer science, applied mathematics, combinatorics, and applied statistics will find the book an essential resource.

目次

* Introduction to BIBDs * Symmetric BIBDs * Difference sets and automorphisms * Hadamard matrices and designs * Resolvable BIBDs * Steiner triple systems * Mutually orthogonal Latin squares * Pairwise balanced designs * t-designs * Orthogonal arrays and codes * Index

「Nielsen BookData」 より

詳細情報

ページトップへ