Geophysical applications of artificial neural networks and fuzzy logic
著者
書誌事項
Geophysical applications of artificial neural networks and fuzzy logic
(Modern approaches in geophysics, v. 21)
Kluwer Academic Publishers, c2003
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-wave analysis, (f) Interpretation (event tracking; lithology prediction and well-log analysis; prospect appraisal; hydrocarbon prediction; inversion; reservoir characterisation; quality assessment; tomography). 2. Earthquake Seismology and Subterranean Nuclear Explosions. 3. Mineral Exploration. 4. Electromagnetic I Potential Field Exploration. (a) Electromagnetic methods, (b) Potential field methods, (c) Ground penetrating radar, (d) Remote sensing, (e) inversion.
目次
Section A Exploration Seismology.- 1 A Review of Automated First-Break Picking and Seismic Trace Editing Techniques.- 2 Automated Picking of Seismic First-Arrivals with Neural Networks.- 3 Automated 3-D Horizon Tracking and Seismic Classification Using Artificial Neural Networks.- 4 Seismic Horizon Picking Using a Hopfield Network.- 5 Refinement of Deconvolution by Neural Networks.- 6 Identification and Suppression of Multiple Reflections in marine Seismic Data with Neural Networks.- 7 Application of Artificial Neural Networks to Seismic Waveform Inversion.- 8 Seismic Principal Components Analysis Using Neural Networks.- Section B Lithology, Well Logs, Prospectivity Mapping and Reservoir Characterisation.- 9 Fuzzy Classification for Lithology Determination from Well Logs.- 10 Reservoir Property Estimation Using the Seismic Waveform and Feedforward Neural Networks.- 11 An Information Integrated Approach for Reservoir Characterisation.- 12 An Artificial Neural Network Method for Mineral Prospectivity Mapping: A Comparison with Fuzzy Logic and Bayesian Probability Methods.- 13 Oil Reservoir Porosity Prediction Using a Neural Network Ensemble Approach.- 14 Interpretation of Shallow Stratigraphic Facies Using a Self-Organizing Neural Network.- 15 Neural Network Inversion of EM39 Induction Log Data.- Section C Electromagnetic Exploration.- 16 Interpretation of Airborne Electromagnetic Data with Neural Networks.- Section D Other Geophysical Applications.- 17 Integrated Processing and Imaging of Exploration Data: An Application of Fuzzy Logic.- 18 Application of Multilayer Perceptrons to Earthquake Seismic Analysis.
「Nielsen BookData」 より