Complexity in new product development : mastering the dynamics of engineering projects

Author(s)

    • Mihm, Jürgen
    • Huchzermeier, Arnd
    • Loch, Christoph

Bibliographic Information

Complexity in new product development : mastering the dynamics of engineering projects

Jürgen Mihm ; with a foreword by Arnd Huchzermeier and Christoph Loch

(Gabler Edition Wissenschaft)

Deutscher Universitäts-Verlag, 2003

1. Aufl

Available at  / 1 libraries

Search this Book/Journal

Note

Originally presented as the author's thesis (doctoral)--Wissenschaftliche Hochschule für Unternehmensführung(WHU) Vallendar, 2002

Includes bibliographical references (p. 115-129)

Description and Table of Contents

Description

Jurgen Mihm builds a mathematical model of a complex distributed design project demonstrating how complexity inevitably arises from the interaction of simple components. He characterizes the dynamic behavior of the system analytically and with the aid of simulations, and he derives classes of managerial actions to improve performance dynamics.

Table of Contents

1 Introduction.- 2 Literature Review.- 2.1 Analytic models of design iteration.- 2.1.1 Models based on the concurrent engineering paradigm.- 2.1.2 Models based on queuing theory.- 2.1.3 Models based on the design structure matrix.- 2.2 Models based on complexity theory.- 2.3 Models from the empirical or descriptive literature.- 2.4 Models based on the simulation of agent populations.- 2.5 Summary.- 3 Model Description.- 3.1 Structure of the NPD process.- 3.2 Component performance and interdependence.- 3.2.1 Influence of the individual decision maker on the component.- 3.2.2 Influence of other decision makers on the component.- 3.2.2.1 Influence on the optimal component decision.- 3.2.2.2 Influence on the component performance.- 3.2.2.2.1 Piecewise linear formulation of bounds.- 3.2.2.2.2 Boundary conditions as error function.- 3.2.2.3 Interaction of influences.- 3.2.3 Performance of the individual decision maker.- 3.2.4 Total performance of the NPD network.- 3.3 Role of time.- 3.3.1 Decision making and time.- 3.3.2 Communication and time.- 3.4 Decision making and coordination.- 3.4.1 Decisions of the uncooperative decision maker.- 3.4.2 Decisions of the cooperative decision maker.- 3.4.2.1 Optimization in the piecewise linear case.- 3.4.2.2 Optimization in the error function case.- 3.5 Model discussion.- 3.5.1 Model limitations.- 3.5.2 Model characteristics in view of the NK model.- 4 Analytic Results.- 4.1 Closed form analysis for the base case.- 4.2 Numerical example.- 4.3 Implications for the base case.- 5 Simulation Results.- 5.1 Definition of simulation technicalities.- 5.2 Simulation results.- 5.2.1 Base case.- 5.2.2 Cooperation among agents.- 5.2.2.1 Cooperation among agents assuming piecewise linear boundary conditions.- 5.2.2.2 Cooperation among agents assuming erf-boundary conditions.- 5.2.3 Instantaneous broadcast of decisions among agents.- 5.2.4 Communication of preliminary information.- 5.2.5 Networks not fully connected.- 5.2.6 Equivoque.- 5.2.7 Robustness of model and results.- 6 Discussion and Conclusion.- A Properties of the Error Function.- B Simulation Data.- B.1 Data for the base series of simulations (25,000 time units).- B.2 Data for the 10,000 time units verification run.- B.3 Data for the 40,000 time units verification run.- C Program Listing.- C.1 Base case.- C.2 Adaptations for instantaneous broadcast.- C.3 Adaptations for the simulation of cooperation.- C.4 Adaptations for the error function case.- C.5 Adaptations for the depleted case.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA67137038
  • ISBN
    • 3824477017
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Wiesbaden
  • Pages/Volumes
    xxiv, 249 p.
  • Size
    21 cm
  • Parent Bibliography ID
Page Top