書誌事項

Model predictive control

Eduardo F. Camacho and Carlos Bordons

(Advanced textbooks in control and signal processing)

Springer, c2004

2nd ed

大学図書館所蔵 件 / 20

この図書・雑誌をさがす

内容説明・目次

内容説明

The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.

目次

1 Introduction to Model Predictive Control.- 1.1 MPC Strategy.- 1.2 Historical Perspective.- 1.3 Industrial Technology.- 1.4 Outline of the Chapters.- 2 Model Predictive Controllers.- 2.1 MPC Elements.- 2.1.1 Prediction Model.- 2.1.2 Objective Function.- 2.1.3 Obtaining the Control Law.- 2.2 Review of Some MPC Algorithms.- 2.3 State Space Formulation.- 3 Commercial Model Predictive Control Schemes.- 3.1 Dynamic Matrix Control.- 3.1.1 Prediction.- 3.1.2 Measurable Disturbances.- 3.1.3 Control Algorithm.- 3.2 Model Algorithmic Control.- 3.2.1 Process Model and Prediction.- 3.2.2 Control Law.- 3.3 Predictive Functional Control.- 3.3.1 Formulation.- 3.4 Case Study: A Water Heater.- 3.5 Exercises.- 4 Generalized Predictive Control.- 4.1 Introduction.- 4.2 Formulation of Generalized Predictive Control.- 4.3 The Coloured Noise Case.- 4.4 An Example.- 4.5 Closed-Loop Relationships.- 4.6 The Role of the T Polynomial.- 4.6.1 Selection of the T Polynomial.- 4.6.2 Relationships with Other Formulations.- 4.7 The P Polynomial.- 4.8 Consideration of Measurable Disturbances.- 4.9 Use of a Different Predictor in GPC.- 4.9.1 Equivalent Structure.- 4.9.2 A Comparative Example.- 4.10 Constrained Receding Horizon Predictive Control.- 4.10.1 Computation of the Control Law.- 4.10.2 Properties.- 4.11 Stable GPC.- 4.11.1 Formulation of the Control Law.- 4.12 Exercises.- 5 Simple Implementation of GPC for Industrial Processes.- 5.1 Plant Model.- 5.1.1 Plant Identification: The Reaction Curve Method.- 5.2 The Dead Time Multiple of the Sampling Time Case.- 5.2.1 Discrete Plant Model.- 5.2.2 Problem Formulation.- 5.2.3 Computation of the Controller Parameters.- 5.2.4 Role of the Control-weighting Factor.- 5.2.5 Implementation Algorithm.- 5.2.6 An Implementation Example.- 5.3 The Dead Time Nonmultiple of the Sampling Time Case.- 5.3.1 Discrete Model of the Plant.- 5.3.2 Controller Parameters.- 5.3.3 Example.- 5.4 Integrating Processes.- 5.4.1 Derivation of the Control Law.- 5.4.2 Controller Parameters.- 5.4.3 Example.- 5.5 Consideration of Ramp Setpoints.- 5.5.1 Example.- 5.6 Comparison with Standard GPC.- 5.7 Stability Robustness Analysis.- 5.7.1 Structured Uncertainties.- 5.7.2 Unstructured Uncertainties.- 5.7.3 General Comments.- 5.8 Composition Control in an Evaporator.- 5.8.1 Description of the Process.- 5.8.2 Obtaining the Linear Model.- 5.8.3 Controller Design.- 5.8.4 Results.- 5.9 Exercises.- 6 Multivariable Model Predictive Control.- 6.1 Derivation of Multivariable GPC.- 6.1.1 White Noise Case.- 6.1.2 Coloured Noise Case.- 6.1.3 Measurable Disturbances.- 6.2 Obtaining a Matrix Fraction Description.- 6.2.1 Transfer Matrix Representation.- 6.2.2 Parametric Identification.- 6.3 State Space Formulation.- 6.3.1 Matrix Fraction and State Space Equivalences.- 6.4 Case Study: Flight Control.- 6.5 Convolution Models Formulation.- 6.6 Case Study: Chemical Reactor.- 6.6.1 Plant Description.- 6.6.2 Obtaining the Plant Model.- 6.6.3 Control Law.- 6.6.4 Simulation Results.- 6.7 Dead Time Problems.- 6.8 Case Study: Distillation Column.- 6.9 Multivariable MPC and Transmission Zeros.- 6.9.1 Simulation Example.- 6.9.2 Tuning MPC for Processes with OUD Zeros.- 6.10 Exercises.- 7 Constrained Model Predictive Control.- 7.1 Constraints and MPC.- 7.1.1 Constraint General Form.- 7.1.2 Illustrative Examples.- 7.2 Constraints and Optimization.- 7.3 Revision of Main Quadratic Programming Algorithms.- 7.3.1 The Active Set Methods.- 7.3.2 Feasible Direction Methods.- 7.3.3 Initial Feasible Point.- 7.3.4 Pivoting Methods.- 7.4 Constraints Handling.- 7.4.1 Slew Rate Constraints.- 7.4.2 Amplitude Constraints.- 7.4.3 Output Constraints.- 7.4.4 Constraint Reduction.- 7.5 1-norm.- 7.6 Case Study: A Compressor.- 7.7 Constraint Management.- 7.7.1 Feasibility.- 7.7.2 Techniques for Improving Feasibility.- 7.8 Constrained MPC and Stability.- 7.9 Multiobjective MPC.- 7.9.1 Priorization of Objectives.- 7.10 Exercises.- 8 Robust Model Predictive Control.- 8.1 Process Models and Uncertainties.- 8.1.1 Truncated Impulse Response Uncertainties.- 8.1.2 Matrix Fraction Description Uncertainties.- 8.1.3 Global Uncertainties.- 8.2 Objective Functions.- 8.2.1 Quadratic Cost Function.- 8.2.2 ?-? norm.- 8.2.3 1-norm.- 8.3 Robustness by Imposing Constraints.- 8.4 Constraint Handling.- 8.5 Illustrative Examples.- 8.5.1 Bounds on the Output.- 8.5.2 Uncertainties in the Gain.- 8.6 Robust MPC and Linear Matrix Inequalities.- 8.7 Closed-Loop Predictions.- 8.7.1 An Illustrative Example.- 8.7.2 Increasing the Number of Decision Variables.- 8.7.3 Dynamic Programming Approach.- 8.7.4 Linear Feedback.- 8.7.5 An Illustrative Example.- 8.8 Exercises.- 9 Nonlinear Model Predictive Control.- 9.1 Nonlinear MPC Versus Linear MPC.- 9.2 Nonlinear Models.- 9.2.1 Empirical Models.- 9.2.2 Fundamental Models.- 9.2.3 Grey-box Models.- 9.2.4 Modelling Example.- 9.3 Solution of the NMPC Problem.- 9.3.1 Problem Formulation.- 9.3.2 Solution.- 9.4 Techniques for Nonlinear Predictive Control.- 9.4.1 Extended Linear MPC.- 9.4.2 Local Models.- 9.4.3 Suboptimal NPMC.- 9.4.4 Use of Short Horizons.- 9.4.5 Decomposition of the Control Sequence.- 9.4.6 Feedback Linearization.- 9.4.7 MPC Based on Volterra Models.- 9.4.8 Neural Networks.- 9.4.9 Commercial Products.- 9.5 Stability and Nonlinear MPC.- 9.6 Case Study: pH Neutralization Process.- 9.6.1 Process Model.- 9.6.2 Results.- 9.7 Exercises.- 10 Model Predictive Control and Hybrid Systems.- 10.1 Hybrid System Modelling.- 10.2 Example: A Jacket Cooled Batch Reactor.- 10.2.1 Mixed Logical Dynamical Systems.- 10.2.2 Example.- 10.3 Model Predictive Control of MLD Systems.- 10.3.1 Branch and Bound Mixed Integer Programming.- 10.3.2 An Illustrative Example.- 10.4 Piecewise Affine Systems.- 10.4.1 Example: Tankwith Different Area Sections.- 10.4.2 Reach Set, Controllable Set, and STG Algorithm.- 10.5 Exercises.- 11 Fast Methods for Implementing Model Predictive Control.- 11.1 Piecewise Affinity of MPC.- 11.2 MPC and Multiparametric Programming.- 11.3 Piecewise Implementation of MPC.- 11.3.1 Illustrative Example: The Double Integrator.- 11.3.2 Nonconstant References and Measurable Disturbances.- 11.3.3 Example.- 11.3.4 The 1-norm and ?-norm Cases.- 11.4 Fast Implementation of MPC forUncertain Systems.- 11.4.1 Example.- 11.4.2 The Closed-Loop Min-max MPC.- 11.5 Approximated Implementation for MPC.- 11.6 Fast Implementation of MPC and Dead Time Considerations.- 11.7 Exercises.- 12 Applications.- 12.1 Solar Power Plant.- 12.1.1 Selftuning GPC Control Strategy.- 12.1.2 Gain Scheduling Generalized Predictive Control.- 12.2 Pilot Plant.- 12.2.1 Plant Description.- 12.2.2 Plant Control.- 12.2.3 Flow Control.- 12.2.4 Temperature Control at the Exchanger Output.- 12.2.5 Temperature Control in the Tank.- 12.2.6 Level Control.- 12.2.7 Remarks.- 12.3 Model Predictive Control in a Sugar Refinery.- 12.4 Olive Oil Mill.- 12.4.1 Plant Description.- 12.4.2 Process Modelling and Validation.- 12.4.3 Controller Synthesis.- 12.4.4 Experimental Results.- 12.5 Mobile Robot.- 12.5.1 Problem Definition.- 12.5.2 Prediction Model.- 12.5.3 Parametrization of the Desired Path.- 12.5.4 Potential Function for Considering Fixed Obstacles.- 12.5.5 The Neural Network Approach.- 12.5.6 Training Phase.- 12.5.7 Results.- A Revision of the Simplex Method.- A.1 Equality Constraints.- A.2 Finding an Initial Solution.- A.3 Inequality Constraints.- B Dynamic Programming and Linear Quadratic Optimal Control.- B.1 LinearQuadratic Problem.- B.2 InfiniteHorizon.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA6766450X
  • ISBN
    • 1852336943
  • LCCN
    2003070755
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    London
  • ページ数/冊数
    xxii, 405 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ