Schedule-based dynamic transit modeling : theory and applications
著者
書誌事項
Schedule-based dynamic transit modeling : theory and applications
(Operations research/computer science interface series, 28)
Kluwer Academic, c2004
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Schedule-Based Dynamic Transit Modeling: Theory and Applications outlines the new schedule-based dynamic approach to mass transit modeling. In the last ten years the schedule-based dynamic approach has been developed and applied especially for operational planning. It allows time evolution of on-board loads and travel times for each run of each line to be obtained, and uses behavioral hypotheses strictly related to transit systems and user characteristics. It allows us to open new frontiers in transit modelling to support network design, timetable setting, investigation of congestion effects, as well as the assessment of new technologies introduction, such as information to users (ITS technologies).
The contributors and editors of the book are leading researchers in the field of transportation, and in this volume they build a solid foundation for developing still more sophisticated models. These future models of mass transit systems will continue to add higher levels of accuracy and sensitivity desired in forecasting the performance of public transport systems.
目次
- - Preface. - General Aspects. - 1: The Schedule-Based approach in dynamic transit modelling: a general overview
- A. Nuzzolo, U. Crisalli. 1.1. Introduction. 1.2. User target time and demand temporal segmentation. 1.3. Transit supply models. 1.4. Schedule-based path choice models. 1.5. Schedule-based assignment models. 1.6. Conclusions. - 2: A dynamic mode transit service choice model to design ex-urban transport service timetables
- E. Cascetta, A. Papola. 2.1. Introduction. 2.2. The proposed joint mode-transit service choice model: general structure. 2.3. The database and choice set definition. 2.4. Estimation of the model. 2.5. Conclusion. - 3: Finding shortest time-dependent paths in Schedule-Based transit networks: a Label Setting algorithm
- M. Florian. 3.1. Introduction. 3.2. General problem definition. 3.3. The deterministic transit assignment algorithm. 3.4. Application issue. 3.5. Conclusions. - 4: A large scale Stochastic Multi-Class Schedule-Based transit model with random coefficients
- O. Anker Nielsen. 4.1. Background. 4.2. Modelling context. 4.3. Utility functions in the transit assignment model. 4.4. Solution algorithm. 4.5. Proposals to optimise MSA-based models. 4.6. Conclusions and recommendations. - 5: Schedule-Based Dynamic Assignment models for public transport networks
- F. Russo. 5.1. Introduction and general definitions. 5.2. Demand models. 5.3. Supply models. 5.4. Transit dynamic assignment models. - Application To ITS. - 6: Simulation-Based Evaluation of Advanced Public Transportation Systems
- D. Morgan, H. Koutsopoulos, M. Ben-Akiva. 6.1. Introduction. 6.2. Model requirements. 6.3. Modeling framework. 6.4. Case study. 6.5. Conclusion. - 7: Short-term prediction of vehicle occupancy in Advanced Public Transportation Information Systems (APTIS)
- P. Coppola, L. Rosati. 7.1. Introduction. 7.2. The case study of the city of Naples. 7.3. The overall modeling framework. 7.4. Preliminary applications to small scale examples networks. 7.5. Conclusion and research perspectives. - 8: DY-RT: a tool for Schedule-Based planning of regional transit networks
- U. Crisalli, L. Rosati. 8.1.Introduction. 8.2. DY-RT software architecture. 8.3. DY-RT: the system of models. 8.4. Application examples. 8.5. Conclusions. - 9: A Schedule-Based transit assignment model addressing the passengers' choice among competing connections
- M. Friedrich, S. Wekech. 9.1. Introduction. 9.2. Existing approaches. 9.3. Connection search. 9.4. Connection choice. 9.5. Application and outlook. - 10: Estimation of transit passenger Origin-Destination matrices from passenger counts in congested transit networks
- W.H K. Lam, Z.X. Wu. 10.1. Introduction. 10.2. Some useful concepts for transit networks and notations. 10.3. Model formulation.
「Nielsen BookData」 より