Multiple imputation for nonresponse in surveys
著者
書誌事項
Multiple imputation for nonresponse in surveys
(Wiley classics library)
Wiley-Interscience, 2004
Wiley classics library ed
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 244-250) and indexes
内容説明・目次
内容説明
Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.
目次
Tables and Figures. Glossary.
1. Introduction.
1.1 Overview.
1.2 Examples of Surveys with Nonresponse.
1.3 Properly Handling Nonresponse.
1.4 Single Imputation.
1.5 Multiple Imputation.
1.6 Numerical Example Using Multiple Imputation.
1.7 Guidance for the Reader.
2. Statistical Background.
2.1 Introduction.
2.2 Variables in the Finite Population.
2.3 Probability Distributions and Related Calculations.
2.4 Probability Specifications for Indicator Variables.
2.5 Probability Specifications for (X,Y).
2.6 Bayesian Inference for a Population Quality.
2.7 Interval Estimation.
2.8 Bayesian Procedures for Constructing Interval Estimates, Including Significance Levels and Point Estimates.
2.9 Evaluating the Performance of Procedures.
2.10 Similarity of Bayesian and Randomization-Based Inferences in Many Practical Cases.
3. Underlying Bayesian Theory.
3.1 Introduction and Summary of Repeated-Imputation Inferences.
3.2 Key Results for Analysis When the Multiple Imputations are Repeated Draws from the Posterior Distribution of the Missing Values.
3.3 Inference for Scalar Estimands from a Modest Number of Repeated Completed-Data Means and Variances.
3.4 Significance Levels for Multicomponent Estimands from a Modest Number of Repeated Completed-Data Means and Variance-Covariance Matrices.
3.5 Significance Levels from Repeated Completed-Data Significance Levels.
3.6 Relating the Completed-Data and Completed-Data Posterior Distributions When the Sampling Mechanism is Ignorable.
4. Randomization-Based Evaluations.
4.1 Introduction.
4.2 General Conditions for the Randomization-Validity of Infinite-m Repeated-Imputation Inferences.
4.3Examples of Proper and Improper Imputation Methods in a Simple Case with Ignorable Nonresponse.
4.4 Further Discussion of Proper Imputation Methods.
4.5 The Asymptotic Distibution of ( m, m,Bm) for Proper Imputation Methods.
4.6 Evaluations of Finite-m Inferences with Scalar Estimands.
4.7 Evaluation of Significance Levels from the Moment-Based Statistics Dm and m with Multicomponent Estimands.
4.8 Evaluation of Significance Levels Based on Repeated Significance Levels.
5. Procedures with Ignorable Nonresponse.
5.1 Introduction.
5.2 Creating Imputed Values under an Explicit Model.
5.3 Some Explicit Imputation Models with Univariate YI and Covariates.
5.4 Monotone Patterns of Missingness in Multivariate YI.
5.5 Missing Social Security Benefits in the Current Population Survey.
5.6 Beyond Monotone Missingness.
6. Procedures with Nonignorable Nonresponse.
6.1 Introduction.
6.2 Nonignorable Nonresponse with Univariate YI and No XI.
6.3 Formal Tasks with Nonignorable Nonresponse.
6.4 Illustrating Mixture Modeling Using Educational Testing Service Data.
6.5 Illustrating Selection Modeling Using CPS Data.
6.6 Extensions to Surveys with Follow-Ups.
6.7 Follow-Up Response in a Survey of Drinking Behavior Among Men of Retirement Age.
References.
Author Index.
Subject Index.
Appendix I. Report Written for the Social Security Administration in 1977.
Appendix II. Report Written for the Census Bureau in 1983.
「Nielsen BookData」 より