Classification, clustering, and data mining applications : proceedings of the meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, 15-18 July 2004

Bibliographic Information

Classification, clustering, and data mining applications : proceedings of the meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, 15-18 July 2004

David Banks ... [et al.], editors

(Studies in classification, data analysis, and knowledge organization)

Springer, c2004

Available at  / 10 libraries

Search this Book/Journal

Note

Includes bibliographical references

Description and Table of Contents

Description

This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

Table of Contents

I New Methods in Cluster Analysis.- Thinking Ultrametrically.- Clustering by Vertex Density in a Graph.- Clustering by Ant Colony Optimization.- A Dynamic Cluster Algorithm Based on Lr Distances for Quantitative Data.- The Last Step of a New Divisive Monothetic Clustering Method: the Gluing-Back Criterion.- Standardizing Variables in K-means Clustering.- A Self-Organizing Map for Dissimilarity Data.- Another Version of the Block EM Algorithm.- Controlling the Level of Separation of Components in Monte Carlo Studies of Latent Class Models.- Fixing Parameters in the Constrained Hierarchical Classification Method: Application to Digital Image Segmentation.- New Approaches for Sum-of-Diameters Clustering.- Spatial Pyramidal Clustering Based on a Tessellation.- II Modern Nonparametrics.- Relative Projection Pursuit and its Application.- Priors for Neural Networks.- Combining Models in Discrete Discriminant Analysis Through a Committee of Methods.- Phoneme Discrimination with Functional Multi-Layer Perceptrons.- PLS Approach for Clusterwise Linear Regression on Functional Data.- On Classification and Regression Trees for Multiple Responses.- Subsetting Kernel Regression Models Using Genetic Algorithm and the Information Measure of Complexity.- Cherry-Picking as a Robustness Tool.- III Classification and Dimension Reduction.- Academic Obsessions and Classification Realities: Ignoring Practicalities in Supervised Classification.- Modified Biplots for Enhancing Two-Class Discriminant Analysis.- Weighted Likelihood Estimation of Person Locations in an Unfolding Model for Polytomous Responses.- Classification of Geospatial Lattice Data and their Graphical Representation.- Degenerate Expectation-Maximization Algorithm for Local Dimension Reduction.- A Dimension Reduction Technique for Local Linear Regression.- Reducing the Number of Variables Using Implicative Analysis.- Optimal Discretization of Quantitative Attributes for Association Rules.- IV Symbolic Data Analysis.- Clustering Methods in Symbolic Data Analysis.- Dependencies in Bivariate Interval-Valued Symbolic Data.- Clustering of Symbolic Objects Described by Multi-Valued and Modal Variables.- A Hausdorff Distance Between Hyper-Rectangles for Clustering Interval Data.- Kolmogorov-Smirnov for Decision Trees on Interval and Histogram Variables.- Dynamic Cluster Methods for Interval Data Based on Mahalanobis Distances.- A Symbolic Model-Based Approach for Making Collaborative Group Recommendations.- Probabilistic Allocation of Aggregated Statistical Units in Classification Trees for Symbolic Class Description.- Building Small Scale Models of Multi-Entity Databases by Clustering.- V Taxonomy and Medicine.- Phylogenetic Closure Operations and Homoplasy-Free Evolution.- Consensus of Classification Systems, with Adams' Results Revisited.- Symbolic Linear Regression with Taxonomies.- Determining Horizontal Gene Transfers in Species Classification: Unique Scenario.- Active and Passive Learning to Explore a Complex Metabolism Data Set.- Mathematical and Statistical Modeling of Acute Inflammation.- Combining Functional MRI Data on Multiple Subjects.- Classifying the State of Parkinsonism by Using Electronic Force Platform Measures of Balance.- Subject Filtering for Passive Biometric Monitoring.- VI Text Mining.- Mining Massive Text Data and Developing Tracking Statistics.- Contributions of Textual Data Analysis to Text Retrieval.- Automated Resolution of Noisy Bibliographic References.- Choosing the Right Bigrams for Information Retrieval.- A Mixture Clustering Model for Pseudo Feedback in Information Retrieval.- Analysis of Cross-Language Open-Ended Questions Through MFACT.- Inferring User's Information Context from User Profiles and Concept Hierarchies.- Database Selection for Longer Queries.- VII Contingency Tables and Missing Data.- An Overview of Collapsibility.- Generalized Factor Analyses for Contingency Tables.- A PLS Approach to Multiple Table Analysis.- Simultaneous Rowand Column Partitioning in Several Contingency Tables.- Missing Data and Imputation Methods in Partition of Variables.- The Treatment of Missing Values and its Effect on Classifier Accuracy.- Clustering with Missing Values: No Imputation Required.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA68715399
  • ISBN
    • 3540220143
  • LCCN
    2004106890
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin ; Tokyo
  • Pages/Volumes
    xiv, 658 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top