Multiscale methods in quantum mechanics : theory and experiment
著者
書誌事項
Multiscale methods in quantum mechanics : theory and experiment
(Trends in mathematics)
Birkhauser, c2004
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
"This volume contains papers which were presented at a meeting entitled "Multiscale Methods in Quantum Mechanics : Theory and Experiment," held at the Academia dei Lincei in Rome (December 16-20, 2002)." -- Pref.
内容説明・目次
内容説明
This volume explores multiscale methods as applied to various areas of physics and to the relative developments in mathematics. In the last few years, multiscale methods have lead to spectacular progress in our understanding of complex physical systems and have stimulated the development of very refined mathematical techniques. At the same time on the experimental side, equally spectacular progress has been made in developing experimental machinery and techniques to test the foundations of quantum mechanics.
目次
1 Organic Molecules and Decoherence Experiments in a Molecule Interferometer.- 2 Colored Hofstadter Butterflies.- 3 Semiclassical Normal Forms.- 4 On the Exit Statistics Theorem of Many-particle Quantum Scattering.- 5 Two-scale Wigner Measures and the Landau-Zener Formulas.- 6 Stability of Three-and Four-Body Coulomb Systems.- 7 Almost Invariant Subspaces for Quantum Evolutions.- 8 Nonlinear Asymptotics for Quantum Out-of-Equilibrium 1D Systems: Reduced Models and Algorithms.- 9 Decoherence-induced Classical Properties in Infinite Quantum Systems.- 10 Classical versus Quantum Structures: The Case of Pyramidal Molecules.- 11 On the Quantum Boltzmann Equation.- 12 Remarks on Time-dependent Schroedinger Equations, Bound States, and Coherent States.- 13 Nonlinear Time-dependent Schroedinger Equations with Double-Well Potential.- 14 Classical and Quantum: Some Mutual Clarifications.- 15 Localization and Delocalization for Nonstationary Models.- 16 On a Rigorous Proof of the Joos-Zeh Formula for Decoherence in a Two-body Problem.- 17 Propagation of Wigner Functions for the Schroedinger Equation with a Perturbed Periodic Potential.
「Nielsen BookData」 より