Forecasting, time series, and regression : an applied approach
Author(s)
Bibliographic Information
Forecasting, time series, and regression : an applied approach
(Duxbury applied series)
Thomson Brooks/Cole, c2005
4th ed
- CD-ROM
Available at 3 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 665-667) and index
Description and Table of Contents
Description
Awarded Outstanding Academic Book by CHOICE magazine in its first edition, FORECASTING, TIME SERIES, AND REGRESSION: AN APPLIED APPROACH illustrates the vital importance of forecasting and the various statistical techniques that can be used to produce them. With an emphasis on applications, this book provides both the conceptual development and practical motivation you need to effectively implement forecasts of your own. You'll understand why using forecasts to make intelligent decisions in marketing, finance, personnel management, production scheduling, process control, and strategic management is so vital.
Table of Contents
Part I: INTRODUCTION AND REVIEW OF BASIC STATISTICS.
1. An Introduction to Forecasting.
Forecasting and Data. Forecasting Methods. Errors in Forecasting. Choosing a Forescasting Technique. An Overview of Quantitative Forecasting Techniques.
2. Basic Statistical Concepts.
Populations. Probability. Random Samples and Sample Statistics. Continuous Probability Distributions. The Normal Probability Distribution. The t-Distribution, the F-Distribution, the Chi-Square Distribution. Confidence Intervals for a Population Mean. Hypothesis Testing for a Population Mean. Exercises.
Part II: REGRESSION ANALYSIS.
3. Simple Linear Regression.
The Simple Linear Regression Model. The Least Squares Point Estimates. Point Estimates and Point Predictions. Model Assumptions and the Standard Error. Testing the Significance of the Slope and y Intercept. Confidence and Prediction Intervals. Simple Coefficients of Determination and Correlation. An F Test for the Model. Exercises.
4. Multiple Linear Regression.
The Linear Regression Model. The Least Squares Estimates, and Point Estimation and Prediction. The Mean Square Error and the Standard Error. Model Utility: R2, Adjusted R2, and the Overall F Test. Testing the Significance of an Independent Variable. Confidence and Prediction Intervals. The Quadratic Regression Model. Interaction. Using Dummy Variables to Model Qualitative Independent Variables. The Partial F Test: Testing the Significance of a Portion of a Regression Model. Exercises.
5. Model Building and Residual Analysis.
Model Building and the Effects of Multicollinearity. Residual Analysis in Simple Regression. Residual Analysis in Multiple Regression. Diagnostics for Detecting Outlying and Influential Observations. Exercises.
Part III: TIME SERIES REGRESSION, DECOMPOSITION METHODS, AND EXPONENTIAL SMOOTHING.
6. Time Series Regression.
Modeling Trend by Using Polynomial Functions. Detecting Autocorrelation. Types of Seasonal Variation. Modeling Seasonal Variation by Using Dummy Variables and Trigonometric Functions. Growth Curves. Handling First-Order Autocorrelation. Exercises.
7. Decomposition Methods.
Multiplicative Decomposition. Additive Decomposition. The X-12-ARIMA Seasonal Adjustment Method. Exercises.
8. Exponential Smoothing.
Simple Exponential Smoothing. Tracking Signals. Holts Trend Corrected Exponential Smoothing. Holt-Winters Methods. Damped Trends and Other Exponential Smoothing Methods. Models for Exponential Smoothing and Prediction Intervals. Exercises.
Part IV: THE BOX-JENKINS METHODOLOGY.
9. Nonseasonal Box-Jenkins Modeling and Their Tentative Identification.
Stationary and Nonstationary Time Series. The Sample Autocorrelation and Partial Autocorrelation Functions: The SAC and SPAC. An Introduction to Nonseasonal Modeling and Forecasting. Tentative Identification of Nonseasonal Box-Jenkins Models. Exercises.
10. Estimation, Diagnostic Checking, and Forecasting for Nonseasonal Box-Jenkins Models.
Estimation. Diagnostic Checking. Forecasting. A Case Study. Box-Jenkins Implementation of Exponential Smoothing. Exercises.
11. Box-Jenkins Seasonal Modeling.
Transforming a Seasonal Time Series into a Stationary Time Series. Three Examples of Seasonal Modeling and Forecasting. Box-Jenkins Error Term Models in Time Series Regression. Exercises.
12. Advanced Box-Jenkins Modeling.
The General Seasonal Model and Guidelines for Tentative Identificatino. Intervention Models. A Procedure for Building a Transfer Function Model. Exercises.
Appendix A: Statistical Tables
Appendix B: Matrix Algebra for Regression Calculations.
Matrices and Vectors. The Transpose of a Matrix. Sums and Differences of Matrices. Matrix Multiplication. The Identity Matrix. Linear Dependence and Linear Independence. The Inverse of a Matrix. The Least Squares Point Esimates. The Unexplained Variation and Explained Variation. The Standard Error of the Estimate b. The Distance Value. Using Squared Terms. Using Interaction Terms. Using Dummy Variable. The Standard Error of the Estimate of a Linear Combination of Regression Parameters. Exercises.
Appendix C: References.
by "Nielsen BookData"