High-resolution X-ray scattering : from thin films to lateral nanostructures
Author(s)
Bibliographic Information
High-resolution X-ray scattering : from thin films to lateral nanostructures
(Advanced texts in physics)(Physics and astronomy online library)
Springer, c2004
2nd. ed
Available at 13 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [389]-402) and index
Description and Table of Contents
Description
During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.
Table of Contents
1 Elements for Designing an X-Ray Diffraction Experiment.- 2 Diffractometers and Reflectometers.- 3 Scans and Resolution in Angular and Reciprocal Space.- 4 Basic Principles.- 5 Kinematical Theory.- 6 Dynamical Theory.- 7 Semikinematical Theory.- 8 Determination of Layer Thicknesses of Single Layers and Multilayers.- 9 Lattice Parameters and Strains in Epitaxial Layers and Multilayers.- 10 Diffuse Scattering From Volume Defects in Thin Layers.- 11 X-Ray Scattering by Rough Multilayers.- 12 X-Ray Scattering by Artificially Lateral Semiconductor Nanostructures.- 13 Strain Analysis in Periodic Nanostructures.- 14 X-Ray Scattering from Self-Organized Structures.- References.
by "Nielsen BookData"