Bibliographic Information

Numerical analysis

Richard L. Burden, J. Douglas Faires

Thomson Brooks/Cole, c2005

8th ed

  • : International student ed
  • : Student ed

Available at  / 6 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 737-746) and index

Description and Table of Contents

Volume

: Student ed ISBN 9780534392000

Description

This well-respected text gives an introduction to the modern approximation techniques and explains how, why, and when the techniques can be expected to work. The authors focus on building students' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. With a wealth of examples and exercises, the text demonstrates the relevance of numerical analysis to a variety of disciplines and provides ample practice for students. The applications chosen demonstrate concisely how numerical methods can be, and often must be, applied in real-life situations. In this edition, the presentation has been fine-tuned to make the book even more useful to the instructor and more interesting to the reader. Overall, students gain a theoretical understanding of, and a firm basis for future study of, numerical analysis and scientific computing. A more applied text with a different menu of topics is the authors' highly regarded NUMERICAL METHODS, Third Edition.
Volume

: International student ed ISBN 9780534404994

Description

This well-respected text gives an introduction to the modern approximation techniques and explains how, why, and when the techniques can be expected to work. The authors focus on building students' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. With a wealth of examples and exercises, the text demonstrates the relevance of numerical analysis to a variety of disciplines and provides ample practice for students. The applications chosen demonstrate concisely how numerical methods can be, and often must be, applied in real-life situations. In this edition, the presentation has been fine-tuned to make the book even more useful to the instructor and more interesting to the reader. Overall, students gain a theoretical understanding of, and a firm basis for future study of, numerical analysis and scientific computing. A more applied text with a different menu of topics is the authors' highly regarded NUMERICAL METHODS, Third Edition.

Table of Contents

1. MATHEMATICAL PRELIMINARIES. Review of Calculus. Round-off Errors and Computer Arithmetic. Algorithms and Convergence. Numerical Software. 2. SOLUTIONS OF EQUATIONS IN ONE VARIABLE. The Bisection Method. Fixed-Point Iteration. The Newton's Method. Error Analysis for Iterative Methods. Accelerating Convergence. Zeros of Polynomials and Muller's Method. Survey of Methods and Software. 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION. Interpolation and the LaGrange Polynomial. Divided Differences. Hermite Interpolation. Cubic Spline Interpolation. Parametric Curves. Survey of Methods and Software. 4. NUMERICAL DIFFERENTIATION AND INTEGRATION. Numerical Differentiation. Richardson's Extrapolation. Elements of Numerical Integration. Composite Numerical Integration. Romberg Integration. Adaptive Quadrature Methods. Gaussian Quadrature. Multiple Integrals. Improper Integrals. Survey of Methods and Software. 5. INITIAL-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS. The Elementary Theory of Initial-Value Problems. Euler's Method. Higher-Order Taylor Methods. Runge-Kutta Methods. Error Control and the Runge-Kutta-Fehlberg Method. Multi-Step Methods. Variable Step-Size Multi-Step Methods. Extrapolation Methods. Higher-Order Equations and Systems of Differential Equations. Stability. Stiff Differential Equations. Survey of Methods and Software. 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS. Linear Systems of Equations. Pivoting Strategies. Linear Algebra and Matrix Inversion. The Determinant of a Matrix. Matrix Factorization. Special Types of Matrices. Survey of Methods and Software. 7. ITERATIVE TECHNIQUES IN MATRIX ALGEBRA. Norms of Vectors and Matrices. Eigenvalues and Eigenvectors. Iterative Techniques for Solving Linear Systems. Error Bounds and Iterative Refinement. The Conjugate Gradient Method. Survey of Methods and Software. 8. APPROXIMATION THEORY. Discrete Least Squares Approximation. Orthogonal Polynomials and Least Squares Approximation. Chebyshev Polynomials and Economization of Power Series. Rational Function Approximation. Trigonometric Polynomial Approximation. Fast Fourier Transforms. Survey of Methods and Software. 9. APPROXIMATING EIGENVALUES. Linear Algebra and Eigenvalues. The Power Method. Householder's Method. The QR Algorithm. Survey of Methods and Software. 10. NUMERICAL SOLUTIONS OF NONLINEAR SYSTEMS OF EQUATIONS. Fixed Points for Functions of Several Variables. Newton's Method. Quasi-Newton Methods. Steepest Descent Techniques. Homotopy and Continuation Methods. Survey of Methods and Software. 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS. The Linear Shooting Method. The Shooting Method for Nonlinear Problems. Finite-Difference Methods for Linear Problems. Finite-Difference Methods for Nonlinear Problems. The Rayleigh-Ritz Method. Survey of Methods and Software. 12. NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS. Elliptic Partial-Differential Equations. Parabolic Partial-Differential Equations. Hyperbolic Partial-Differential Equations. An Introduction to the Finite-Element Method. Survey of Methods and Software. Bibliography. Answers to Selected Exercises. Index.

by "Nielsen BookData"

Details

  • NCID
    BA70189630
  • ISBN
    • 9780534404994
    • 9780534392000
  • LCCN
    2004113929
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Belmont, Calif.
  • Pages/Volumes
    xiv, 847 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
Page Top