Theoretical optics : an introduction

書誌事項

Theoretical optics : an introduction

Hartmann Römer

Wiley-VCH, c2005

電子リソースにアクセスする 全1

大学図書館所蔵 件 / 4

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light--matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researchers.

目次

Preface to the German edition.Preface to the English edition.1. A short survey of the history of optics.2. The electrodynamics of continuous media.2.1 Maxwell's equations.2.2 Molecular vs. macroscopic fields.2.3 A simple model for the electric current.2.4 Dispersion relations and the passivity condition.2.5 Electric displacement density and magnetic field strength.2.6 Index of refraction and coefficient of absorption.2.7 The electromagnetic material quantities.2.8 The oscillator model for the electric susceptibility.2.9 Material equations in moving media.3. Linear waves in homogeneous media.3.1 Elastic waves in solids.3.2 Isotropic elastic media.3.3 Wave surfaces and ray surfaces.4. Crystal optics.4.1 The normal ellipsoid.4.2 Plane waves in crystals.4.3 Optically uniaxial crystals.4.4 Optically biaxial crystals.4.5 Reflection and refraction at interfaces.4.6 Fresnel's equations.4.7 The Fabry-Perot interferometer.5. Electro-, magneto- and elastooptical phenomena.5.1 Polarization effects up to first order - optical activity.5.2 Polarization effects of higher order.6. Foundations of nonlinear optics.6.1 Nonlinear polarization - combination frequencies.6.2 Nonlinear waves in a medium.6.3 Survey of phenomena in nonlinear optics.6.4 Parametric amplification and frequency doubling.6.5 Phase matching.6.6 Self-focussing, optical bistability, phase self-modulation.6.7 Phase conjugation.6.8 Fiber optics and optical solitons.7. Short-wave asymptotics.7.1 Introductory remarks.7.2 Short-wave expansion of Maxwell's equations.7.3 The scalar wave equation.7.4 Phase surfaces and rays.7.5 Fermat's principle.7.6 Analogy between mechanics and geometrical optics.8. Geometrical optics.8.1 Fermat's principle and focal points.8.2 Perfect optical instruments.8.3 Maxwell's fish-eye.8.4 Canonical transformations and eikonal functions.8.5 Imaging points close to the optic axis by wide spread ray bundles.8.6 Linear geometrical optics and symplectic transformations.8.7 Gaussian optics and image matrices.8.8 Lens defects and Seidel's theory of aberrations.9. Geometric theory of caustics.9.1 Short-wave asymptotics for linear partial differential equations.9.2 Solution of the characteristic equation.9.3 Solution of the transport equation.9.4 Focal points and caustics.9.5 Behavior of phases in the vicinity of caustics.9.6 Caustics, Lagrangian submanifolds and Maslov index.9.7 Supplementary remarks on geometrical short-wave asymptotics.10. Diffraction theory.10.1 Survey.10.2 The principles of Huygens and Fresnel.10.3 The method of stationary phases.10.4 Kirchhoff's representation of the wave amplitude.10.5 Kirchhoff's theory of diffraction.10.6 Diffraction at an edge.10.7 Examples of Fraunhofer diffraction.10.8 Optical image processing in Fourier space.10.9 Morse families.10.10 Oscillatory functions and Fourier integral operators.11. Holography.11.1 The principle of holography.11.2 Modifications and applications.11.3 Volume holograms.12. Coherence theory.12.1 Coherent and incoherent light.12.2 Real and analytical signals.12.3 The light wave field as a stochastic process.12.4 Gaussian stochastic processes.12.5 The quasi-monochromatic approximation.12.6 Coherence and correlation functions.12.7 The propagation of the correlation function.12.8 Amplitude and intensity interferometry.12.9 Dynamical light scattering.12.10 Granulation.12.11 Image processing by filtering.12.12 Polarization of partially coherent light.13. Quantum states of the electromagnetic field.13.1 Quantization of the electromagnetic field and harmonic oscillators.13.2 Coherent and squeezed states.13.3 Operators, ordering procedures and star products.13.4 The Q, P, and Wigner functions of a density operator.14. Detection of radiation fields.14.1 Beam splitters and homodyne detection.14.2 Correlation functions and quantum coherence.14.3 Measurement of correlation functions.14.4 Anti-bunching and sub-Poissonian light.15. Interaction of radiation and matter.15.1 The electric dipole interaction.15.2 Simple laser theory.15.3 Three-level systems and atomic interference.15.4 The Jaynes-Cummings model.15.5 The micromaser.15.6 Quantum state engineering.15.7 The Paul trap.15.8 Motion of a two-level atom in a quantized light field .16. Quantum optics and fundamental quantum theory.16.1 Quantum entanglement.16.2 Bell's inequalities.16.3 Quantum erasers and measurement without interaction.16.4 No cloning and quantum teleportation.16.5 Quantum cryptography.16.6 Quantum computation.Selected references.Index.

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BA70945904
  • ISBN
    • 3527404295
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Weinheim
  • ページ数/冊数
    xii, 361 p.
  • 大きさ
    25 cm
  • 件名
ページトップへ