Practical genetic algorithms
著者
書誌事項
Practical genetic algorithms
Wiley-Interscience , John Wiley, c2004
2nd ed
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
Includes 1CD-ROM
内容説明・目次
内容説明
* This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science
* Most significant update to the second edition is the MATLAB codes that accompany the text
* Provides a thorough discussion of hybrid genetic algorithms
* Features more examples than first edition
目次
Preface. Preface to First Edition.
List of Symbols.
1. Introduction to Optimization.
1.1 Finding the Best Solution.
1.2 Minimum-Seeking Algorithms.
1.3 Natural Optimization Methods.
1.4 Biological Optimization: Natural Selection.
1.5 The Genetic Algorithm.
2. The Binary Genetic Algorithm.
2.1 Genetic Algorithms: Natural Selection on a Computer.
2.2 Components of a Binary Genetic Algorithm.
2.3 A Parting Look.
3. The Continuous Genetic Algorithm.
3.1 Components of a Continuous Genetic Algorithm.
3.2 A Parting Look.
4. Basic Applications.
4.1 "Mary Had a Little Lamb".
4.2 Algorithmic Creativity-Genetic Art.
4.3 Word Guess.
4.4 Locating an Emergency Response Unit.
4.5 Antenna Array Design.
4.6 The Evolution of Horses.
4.7 Summary.
5. An Added Level of Sophistication.
5.1 Handling Expensive Cost Functions.
5.2 Multiple Objective Optimization.
5.3 Hybrid GA.
5.4 Gray Codes.
5.5 Gene Size.
5.6 Convergence.
5.7 Alternative Crossovers for Binary GAs.
5.8 Population.
5.9 Mutation.
5.10 Permutation Problems.
5.11 Selling GA Parameters.
5.12 Continuous versus Binary GA.
5.13 Messy Genetic Algorithms.
5.14 Parallel Genetic Algorithms.
6. Advanced Applications.
6.1 Traveling Salespersons Problem.
6.2 Locating an Emergency Response Unit Revisited.
6.3 Decoding a Secret Message.
6.4 Robot Trajectory Planning.
6.5 Stealth Design.
6.6 Building Dynamical Inverse Models-The Linear Case.
6.7 Building Dynamical Inverse Models-The Nonlinear Case.
6.8 Combining GAs with Simulations-Air Pollution Receptor Modeling.
6.9 Combining Methods Neural Nets with GAs.
6.10 Solving High-Order Nonlinear Partial Differential Equations.
7. More Natural Optimization Algorithms.
7.1 Simulated Annealing.
7.2 Particle Swarm Optimization (PSO).
7.3 Ant Colony Optimization (ACO).
7.4 Genetic Programming (GP).
7.5 Cultural Algorithms.
7.6 Evolutionary Strategies.
7.7 The Future of Genetic Algorithms.
Appendix I: Test Functions.
Appendix II: MATLAB Code.
Appendix III. High-Performance Fortran Code.
Glossary.
Index.
「Nielsen BookData」 より