Models and methods in social network analysis
著者
書誌事項
Models and methods in social network analysis
(Structural analysis in the social sciences, 27)
Cambridge University Press, 2005
- : hard
- : pbk
大学図書館所蔵 全70件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies and index
内容説明・目次
内容説明
Models and Methods in Social Network Analysis, first published in 2005, presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.
目次
- Acknowledgements
- 1. Introduction Stanley Wasserman, John Scott and Peter J. Carrington
- 2. Recent developments in network measurement Peter V. Marsden
- 3. Network sampling and model fitting Ove Frank
- 4. Extending centrality Martin Everett and Stephen P. Borgatti
- 5. Positional analyses of sociometric data Patrick Doreian, Vladimir Batagelj and Anuska Ferligoj
- 6. Network models and methods for studying the diffusion of innovations Thomas W. Valente
- 7. Using correspondence analysis for joint displays of affiliation networks Katherine Faust
- 8. An introduction to random graphs, dependence graphs, and p* Stanley Wasserman and Garry Robins
- 9. Random graph models for social networks: multiple relations or multiple raters Laura M. Koehly and Philippa Pattison
- 10. Interdependencies and social processes: dependence graphs and generalized dependence structures Garry Robins and Philippa Pattison
- 11. Models for longitudinal network data Tom A. B. Snijders
- 12. Graphical techniques for exploring social network data Linton C. Freeman
- 13. Software for social network analysis Mark Huisman and Marijtje A. J. van Duijn
- Index.
「Nielsen BookData」 より