Plant nutritional genomics
著者
書誌事項
Plant nutritional genomics
(Biological sciences series / series editors, Jeremy A. Roberts, Peter N.R. Usherwood)
Blackwell , CRC Press, 2005
- : uk
- : us : cn
大学図書館所蔵 件 / 全8件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
A 'textbook' plant typically comprises about 85% water and 13.5% carbohydrates. The remaining fraction contains at least 14 mineral elements, without which plants would be unable to complete their life cycles.
Understanding plant nutrition and applying this knowledge to practical use is important for several reasons. First, an understanding of plant nutrition allows fertilisers to be used more wisely. Second, the nutritional composition of crops must be tailored to meet the health of humans and livestock. Third, many regions of the world are currently unsuitable for crop production, and an understanding of plant nutrition can be used to develop strategies either for the remediation of this land or for the cultivation of novel crops.
That application of knowledge of plant nutrition can be achieved through genotypic or agronomic approaches. Genotypic approaches, based on crop selection and / or breeding (conventional or GM), have recently begun to benefit from technological advances, including the completion of plant genome sequencing projects. This book provides an overview of how plant nutritional genomics, defined as the interaction between a plant's genome and its nutritional characteristics, has developed in the light of these technological advances, and how this new knowledge might usefully be applied.
This is a book for researchers and professionals in plant molecular genetics, biochemistry and physiology, in both the academic and industrial sectors.
目次
1. Nitrogen. Francoise Daniel-Vedele and Sylvain Chaillou, Plant Nitrogen Nutrition Unit, INRA Versailles, Frances.
2. Potassium.
Sabine Zimmermann and Isabelle Cherel, INRA - Biochimie et Physiologie Moleculaire des Plantes, Montpellier, France.
3. Calcium.
Philip J. White, Horticulture Research International, Wellesbourne, Warwick, UK.
4. Sulphur.
Malcolm J. Hawkesford, Agriculture and the Environment Division, Rothamsted Research, Harpenden, UK.
5. Phosphorus.
Kashchandra G. Raghothama, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, USA.
6. Sodium.
Huazhong Shi, Ray A. Bressan, Paul M. Hasegawa and Jian-Kang Zhu, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, USA.
7. Mapping links between the genome and ionome in plants.
Brett Lahner and David E. Salt, Department of Horticulture and Landscape Architechture, Purdue University, West Lafayette, Indiana, USA.
8. Transcriptional profiling of membrane transporters.
Frans J.M. Maathuis, Department of Biology, University of York, UK and Anna Amtmann, Laboratory of Plant Physiology and Biophysics, University of Glasgow, UK.
9. Exploring natural genetic variation to improve plant nutrient content.
Dick Vreugdenhil , Mark G.M. Aarts and Maarten Koornneef, Laboratory of Genetics, Wageningen University, The Netherlands.
10. Mapping nutritional traits in crop plants.
Matthias Wissuwa, International Rice Research Institute, Manila, The Philippines.
11. Sustainable crop nutrition: constraints and opportunities.
R. Ford Denison and E. Toby Kiers, Agronomy & Range Science Department, University of California, Davis, USA.
12. Methods to improve the crop-delivery of minerals to humans and livestock.
Michael A. Grusak, Baylor College of Medicine, Houston, Texas, USA and Ismail Cakmak, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
13. Using plants to manage sites contaminated with heavy metals.
Steven N. Whiting, School of Botany, University of Melbourne, Australia, Roger D. Reeves, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, David Richards, Rio Tinto Plc, London, UK et al..
References.
Index
「Nielsen BookData」 より