Space weather & telecommunications
著者
書誌事項
Space weather & telecommunications
(The Kluwer international series in engineering and computer science, 782)
Springer, c2005
- : hc
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Space weather has an enormous influence on modern telecommunication systems even though we may not always appreciate it. We shall endeavor throughout this monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use the term in the title of programs. But it is the logical consequence of the realization that space also has weather, just as the lower atmosphere has weather. While the weather in space will influence space systems that operate in that special environment, it is also true that space weather will influence systems that we understand and use here on terra firma. This brings space weather home as it were. It is not some abstract topic of interest to scientists alone; it is a topic of concern to all of us. I hope to make this clear as the book unfolds. Why have I written this book? First of all, I love the topic. While at the Naval Research Laboratory (NRL), I had the opportunity to do research on many topics including: Thomson scatter radar and satellite beacon studies of the ionosphere, utilization of the NASA Gemini platform for ionospheric investigations, microwave radar propagation studies, I-IF signal intercept and direction-finding experiments, and multi-disciplinary studies of certain physical phenomena relevant to weapon systems development.
目次
Preface 1: Introduction
1.1 Summary
1.2 Definition of Space Weather
1.3 An Historical Perspective
1.4 The Advent of Space Weather Programs
1.5 Categories of Radio Systems
1.6 Other Influences on Systems
1.7 Space Weather Data Utilization
1.8 Conclusions
1.9 References
1.10 Bibliography 2: The Origins Of Space Weather
2.1 Introduction
2.2 The Sun and its Influence
2.3 Magnetosphere and Geomagnetic Storms
2.4 Motivation for Space Weather Observations
2.5 References 3: The Ionosphere
3.1 Introduction
3.2 General Properties of the Ionosphere
3.3 Equilibrium Processes
3.4 Description of the Ionospheric Layers
3.5 Diurnal Behavior of the Ionospheric Layers
3.6 Long-Term Solar Activity Dependence
3.7 Sporadic-E
3.8 The High Latitude Ionosphere
3.9 Ionospheric Response to Solar Flares
3.10 The Ionospheric Storm
3.11 Ionospheric Current Systems
3.12 Ionospheric Models
3.13 Ionospheric Predictions
3.14 Science Issues and Challenges
3.15 References 4: Telecommunication Systems
4.1 Introduction
4.2 Outline of Ionospheric Effects
4.3 Terrestrial Telecommunications
4.4 Earth-Space Telecommunications
4.5 Space Weather Support for Systems
4.6 References 5: Prediction Services and Systems
5.1 Introduction
5.2 Requirements
5.3 Elements of the Prediction Process
5.4 Organizational Approaches
5.5 Commercial Forecasting Services
5.6 Systems for Forecasting
5.7 Concluding Remark
5.8 References 6: Research Activities and Programs
6.1 Introduction
6.2 National Space Weather Program
6.3 Living with a Star 6.4 Data Assimilation and Transfer
6.5 Military Space Weather Involvement
6.6 International Initiatives
6.7 Scientific and Professional Organizations
6.8 Research Programs and Activities
6.9 Agencies Institutions and Companies
6.10 Comment on Internet Resources
6.11 References 7: Epilogue
- Featuring an interview with the Director of SEC
Acronyms And Terms
Index
About the Author
「Nielsen BookData」 より