Statistics : an introduction using R
著者
書誌事項
Statistics : an introduction using R
John Wiley & Sons, c2005
- : cloth
- : pbk
大学図書館所蔵 全52件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Reprinted with corrections December 2005"--T.p. verso of Jan. 2010 reprinting
Includes bibliographical references (p. [305]-308) and index
内容説明・目次
- 巻冊次
-
: cloth ISBN 9780470022979
内容説明
Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. "Statistics: An Introduction using R" is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best selling title "Statistical Computing". It features step by step instructions that assume no mathematics, statistics or programming background, helping the non statistician to fully understand the methodology. It uses a series of realistic examples, developing step wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing.
It covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t tests and chi squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. It includes numerous worked examples and exercises within each chapter. It is accompanied by a website featuring worked examples, data sets, exercises and solutions. "Statistics: An Introduction using R" is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.
目次
Preface. Chapter 1 Fundamentals. Chapter 2 Dataframes. Chapter 3 Central Tendency. Chapter 4 Variance. Chapter 5 Single Samples. Chapter 6 Two Samples. Chapter 7 Statistical Modelling. Chapter 8 Regression. Chapter 9 Analysis of Variance. Chapter 10 Analysis of Covariance. Chapter 11 Multiple Regression. Chapter 12 Contrasts. Chapter 13 Count Data. Chapter 14 Proportion Data. Chapter 15 Death and Failure Data. Chapter 16 Binary Response Variable. Appendix 1: Fundamentals of the R Language.
- 巻冊次
-
: pbk ISBN 9780470022986
内容説明
Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the authora s previous best--selling title Statistical Computing. aeo Features step--by--step instructions that assume no mathematics, statistics or programming background, helping the non--statistician to fully understand the methodology. aeo Uses a series of realistic examples, developing step--wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. aeo The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. aeo Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t--tests and chi--squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling.
aeo Includes numerous worked examples and exercises within each chapter. aeo Accompanied by a website featuring worked examples, data sets, exercises and solutions: http://www.imperial.ac.uk/bio/research/crawley/statistics Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology -- but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.
目次
Preface. Chapter 1. Fundamentals. Chapter 2. Dataframes. Chapter 3. Central Tendency. Chapter 4. Variance. Chapter 5. Single Samples. Chapter 6. Two Samples. Chapter 7. Statistical Modelling. Chapter 8. Regression. Chapter 9. Analysis of Variance. Chapter 10. Analysis of Covariance. Chapter 11. Multiple Regression. Chapter 12. Contrasts. Chapter 13. Count Data. Chapter 14. Proportion Data. Chapter 15. Death and Failure Data. Chapter 16. Binary Response Variable. Appendix 1: Fundamentals of the R Language. References and Further Reading. Index.
「Nielsen BookData」 より