Principles of adaptive filters and self-learning systems

著者

    • Zaknich, Anthony

書誌事項

Principles of adaptive filters and self-learning systems

A. Zaknich

(Advanced textbooks in control and signal processing)

Springer, 2005

  • : pbk

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Teaches students about classical and nonclassical adaptive systems within one pair of covers Helps tutors with time-saving course plans, ready-made practical assignments and examination guidance The recently developed "practical sub-space adaptive filter" allows the reader to combine any set of classical and/or non-classical adaptive systems to form a powerful technology for solving complex nonlinear problems

目次

Part I: Introduction Adaptive Filtering Linear Systems and Stochastic Processes Part II: Modelling Optimisation and Least Square Estimation Parametric Signal and System Modelling Part III: Classical Filters and Spectral Analysis Optimum Wiener Filter Optimal Kalman Filter Power Spectral Density Analysis Part IV: Adaptive Filter Theory Adaptive Finite Impulse Response Filters Frequency Domain Adaptive Filters Adaptive Volterra Filters Adaptive Control Systems Part V: Nonclassical Adaptive Systems Introduction to Neural Networks Introduction to Fuzzy Logic Systems Introduction to Genetic Algorithms Part VI: Adaptive Filter Application Applications of Adaptive Signal Processing Generic Adaptive Filter Structures

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA72132918
  • ISBN
    • 1852339845
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    London
  • ページ数/冊数
    xxii, 386 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ