Rippling : meta-level guidance for mathematical reasoning
著者
書誌事項
Rippling : meta-level guidance for mathematical reasoning
(Cambridge tracts in theoretical computer science, 56)
Cambridge University Press, 2005
- : hbk
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
HTTP:URL=http://www.loc.gov/catdir/toc/cam051/2004051866.html Information=Table of contents
HTTP:URL=http://www.loc.gov/catdir/description/cam051/2004051866.html Information=Publisher description
内容説明・目次
内容説明
Rippling is a radically new technique for the automation of mathematical reasoning. It is widely applicable whenever a goal is to be proved from one or more syntactically similar givens. It was originally developed for inductive proofs, where the goal was the induction conclusion and the givens were the induction hypotheses. It has proved to be applicable to a much wider class of tasks, from summing series via analysis to general equational reasoning. The application to induction has especially important practical implications in the building of dependable IT systems, and provides solutions to issues such as the problem of combinatorial explosion. Rippling is the first of many new search control techniques based on formula annotation; some additional annotated reasoning techniques are also described here. This systematic and comprehensive introduction to rippling, and to the wider subject of automated inductive theorem proving, will be welcomed by researchers and graduate students alike.
目次
- Preface
- 1. An introduction to rippling
- 2. Varieties of rippling
- 3. Productive use of failure
- 4. A formal account of rippling
- 5. The scope and limitations of rippling
- 6. From rippling to a general methodology
- 7. Conclusions
- Appendix 1. An annotated calculus and a unification algorithm
- Appendix 2. Definitions of functions used in this book
- Bibliography
- Index.
「Nielsen BookData」 より